Home
Class 12
MATHS
If the value int(1-(cotx)^(2008))/(tanx+...

If the value `int(1-(cotx)^(2008))/(tanx+(cotx)^(2009))dx=1/k ln|sin^kx+cos^kx|+c`,then find k.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{1 - (\cot x)^{2008}}{\tan x + (\cot x)^{2009}} \, dx, \] we will first rewrite the expression in terms of sine and cosine. ### Step 1: Rewrite in terms of sine and cosine Recall that: - \(\tan x = \frac{\sin x}{\cos x}\) - \(\cot x = \frac{\cos x}{\sin x}\) Substituting these into the integral gives: \[ I = \int \frac{1 - \left(\frac{\cos x}{\sin x}\right)^{2008}}{\frac{\sin x}{\cos x} + \left(\frac{\cos x}{\sin x}\right)^{2009}} \, dx. \] This simplifies to: \[ I = \int \frac{1 - \frac{\cos^{2008} x}{\sin^{2008} x}}{\frac{\sin^2 x}{\cos x} + \frac{\cos^{2009} x}{\sin^{2009} x}} \, dx. \] ### Step 2: Simplify the numerator and denominator The numerator becomes: \[ \frac{\sin^{2008} x - \cos^{2008} x}{\sin^{2008} x}. \] The denominator can be expressed as: \[ \frac{\sin^2 x \cdot \sin^{2009} x + \cos^{2010} x}{\sin^{2009} x \cdot \cos x}. \] Thus, we have: \[ I = \int \frac{\sin^{2008} x - \cos^{2008} x}{\sin^{2008} x} \cdot \frac{\sin^{2009} x \cdot \cos x}{\sin^2 x \cdot \sin^{2009} x + \cos^{2010} x} \, dx. \] ### Step 3: Combine and simplify Taking the LCM in the denominator, we can rewrite: \[ I = \int \frac{\sin^{2008} x - \cos^{2008} x}{\sin^{2010} x + \cos^{2010} x} \, dx. \] ### Step 4: Substitution Let \( t = \sin^{2010} x + \cos^{2010} x \). Then, differentiating both sides gives: \[ dt = 2010 \left( \sin^{2009} x \cos x \, dx - \cos^{2009} x \sin x \, dx \right). \] Rearranging gives: \[ \frac{dt}{2010} = \sin^{2009} x \cos x \, dx - \cos^{2009} x \sin x \, dx. \] ### Step 5: Substitute back into the integral Substituting back into the integral, we have: \[ I = \frac{1}{2010} \int \frac{dt}{t}. \] This integral evaluates to: \[ I = \frac{1}{2010} \ln |t| + C = \frac{1}{2010} \ln |\sin^{2010} x + \cos^{2010} x| + C. \] ### Step 6: Compare with given expression We are given that: \[ I = \frac{1}{k} \ln |\sin^k x + \cos^k x| + C. \] From our result, we can see that \( k = 2010 \). ### Final Answer Thus, the value of \( k \) is: \[ \boxed{2010}. \]

To solve the integral \[ I = \int \frac{1 - (\cot x)^{2008}}{\tan x + (\cot x)^{2009}} \, dx, \] we will first rewrite the expression in terms of sine and cosine. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE MAIN (Single Correct Answer Type)|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(1-cotx)\ dx

Evaluate: int1/(1-cotx)\ dx

Evaluate: int(cotx)/(sinx)dx

Evaluate : int_(pi/3)^(pi/4)(tanx+cotx)^2dx

Evaluate : int_(pi/3)^(pi/4)(tanx+cotx)^2dx

Evaluate: int1/(1+cotx)\ dx

Evaluate: int(cotx)/(sqrt(sinx))dx

Evaluate: int(cotx)/(sqrt(sinx))dx

Evaluate: int(1+cos4x)/(cotx-tanx)\ dx

int(1+cos4x)/(cotx-tanx)dx