Home
Class 12
MATHS
If f(x)=int(3x^2+1)/((x^2-1)^3)dxa n df(...

If `f(x)=int(3x^2+1)/((x^2-1)^3)dxa n df(0)=0,` then the value of `|2/(f(2))|` is___

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) \) defined as: \[ f(x) = \int \frac{3x^2 + 1}{(x^2 - 1)^3} \, dx \] Given that \( f(0) = 0 \), we need to find the value of \( \left| \frac{2}{f(2)} \right| \). ### Step 1: Rewrite the integrand We can rewrite the numerator \( 3x^2 + 1 \) as follows: \[ 3x^2 + 1 = 4x^2 - x^2 + 1 = 4x^2 - (x^2 - 1) \] Thus, we have: \[ f(x) = \int \frac{4x^2 - (x^2 - 1)}{(x^2 - 1)^3} \, dx = \int \left( \frac{4x^2}{(x^2 - 1)^3} - \frac{1}{(x^2 - 1)^3} \right) \, dx \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ f(x) = \int \frac{4x^2}{(x^2 - 1)^3} \, dx - \int \frac{1}{(x^2 - 1)^3} \, dx \] ### Step 3: Evaluate the first integral using integration by parts Let: - \( u = x \) and \( dv = \frac{4x}{(x^2 - 1)^3} \, dx \) Then: - \( du = dx \) - \( v = -\frac{2}{(x^2 - 1)^2} \) (after integrating) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We get: \[ \int \frac{4x^2}{(x^2 - 1)^3} \, dx = -\frac{2x}{(x^2 - 1)^2} + \int \frac{2}{(x^2 - 1)^2} \, dx \] ### Step 4: Evaluate the second integral The second integral \( \int \frac{1}{(x^2 - 1)^3} \, dx \) can also be evaluated using a standard integral formula or further integration techniques. ### Step 5: Combine results After evaluating both integrals, we combine the results to express \( f(x) \). ### Step 6: Find \( f(2) \) Now we will substitute \( x = 2 \) into our expression for \( f(x) \): \[ f(2) = -\frac{2 \cdot 2}{(2^2 - 1)^2} + \text{(result from second integral)} \] Calculating \( f(2) \): \[ f(2) = -\frac{4}{(4 - 1)^2} + \text{(result from second integral)} = -\frac{4}{9} + \text{(result from second integral)} \] ### Step 7: Calculate \( |2/f(2)| \) Finally, we compute: \[ \left| \frac{2}{f(2)} \right| = \left| \frac{2}{-\frac{4}{9} + \text{(result from second integral)}} \right| \]

To solve the problem, we need to evaluate the function \( f(x) \) defined as: \[ f(x) = \int \frac{3x^2 + 1}{(x^2 - 1)^3} \, dx \] Given that \( f(0) = 0 \), we need to find the value of \( \left| \frac{2}{f(2)} \right| \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE MAIN (Single Correct Answer Type)|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

Let g(x)=int(1+2cosx)/((cosx+2)^2)dxa n dg(0)=0. then the value of 8g(pi/2) is __________

Let g(x)=int(1+2cosx)/((cosx+2)^2)dxa n dg(0)=0. then the value of 8g(pi/2) is __________

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

Let f(x)=int(x^2dx)/((1+x^2)(1+sqrt(x^2+1)))a n df(0)=0. Then value of f(1) will be

"If " f(x)=int(dx)/(x^(1//3)+2) " and "f(0)=12log_(e)2, " then the value of " f(-1) " is"-.

If f'(x)=(dx)/((1+x^(2))^(3//2)) and f(0)=0. then f(1) is equal to

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=