Home
Class 12
MATHS
"If " f(x)=sqrt(x),g(x)=e^(x)-1,and int ...

`"If " f(x)=sqrt(x),g(x)=e^(x)-1,`and `int fog(x)dx=A fog(x)+B tan^(-1)(fog(x))+C,` then `A+B " is equal to ".`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( A + B \) given the functions \( f(x) = \sqrt{x} \) and \( g(x) = e^x - 1 \). We are also given the integral: \[ \int f(g(x)) \, dx = A f(g(x)) + B \tan^{-1}(f(g(x))) + C \] ### Step-by-Step Solution: 1. **Find \( f(g(x)) \)**: \[ g(x) = e^x - 1 \implies f(g(x)) = f(e^x - 1) = \sqrt{e^x - 1} \] 2. **Set up the integral**: We need to evaluate: \[ \int \sqrt{e^x - 1} \, dx \] 3. **Substitution**: Let \( t = \sqrt{e^x - 1} \). Then, squaring both sides gives: \[ t^2 = e^x - 1 \implies e^x = t^2 + 1 \] Taking the natural logarithm: \[ x = \ln(t^2 + 1) \] 4. **Differentiate to find \( dx \)**: Differentiate \( e^x \): \[ \frac{d}{dx}(e^x) = e^x \implies dx = \frac{2t}{e^x} dt \] Substitute \( e^x = t^2 + 1 \): \[ dx = \frac{2t}{t^2 + 1} dt \] 5. **Substitute into the integral**: Now substituting \( \sqrt{e^x - 1} \) and \( dx \): \[ \int \sqrt{e^x - 1} \, dx = \int t \cdot \frac{2t}{t^2 + 1} dt = 2 \int \frac{t^2}{t^2 + 1} dt \] 6. **Simplify the integral**: Rewrite the integrand: \[ \frac{t^2}{t^2 + 1} = 1 - \frac{1}{t^2 + 1} \] Thus: \[ 2 \int \left( 1 - \frac{1}{t^2 + 1} \right) dt = 2 \left( \int dt - \int \frac{1}{t^2 + 1} dt \right) \] 7. **Integrate**: The integrals become: \[ 2 \left( t - \tan^{-1}(t) \right) + C \] 8. **Back substitute \( t \)**: Recall \( t = \sqrt{e^x - 1} \): \[ 2 \left( \sqrt{e^x - 1} - \tan^{-1}(\sqrt{e^x - 1}) \right) + C \] 9. **Compare with the given form**: We have: \[ \int f(g(x)) \, dx = 2 \sqrt{e^x - 1} - 2 \tan^{-1}(\sqrt{e^x - 1}) + C \] Comparing with: \[ A f(g(x)) + B \tan^{-1}(f(g(x))) + C \] We find: - \( A = 2 \) - \( B = -2 \) 10. **Calculate \( A + B \)**: \[ A + B = 2 - 2 = 0 \] ### Final Answer: \[ A + B = 0 \]

To solve the problem, we need to find the value of \( A + B \) given the functions \( f(x) = \sqrt{x} \) and \( g(x) = e^x - 1 \). We are also given the integral: \[ \int f(g(x)) \, dx = A f(g(x)) + B \tan^{-1}(f(g(x))) + C \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE MAIN (Single Correct Answer Type)|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If f(x)=10x-7 and (fog)(x)=x , then g(x) is equal to:

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

If f(x)=x+4, g(x)=2x-1 and h(x) =3x then find (fog)oh .

If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x) , then the domain of fog (x) is

Find fog if f(x)= x-2 and g(x) = 3x

If "f"("x")=x+7 and g(x)=x-7,\ x\ \ R , find (fog)(7)

If f(x) = (x + 1)/(x-1) and g(x) = (1)/(x-2) , then (fog)(x) is discontinuous at

If f(x)=sqrt(x+3) and g(x)=x^2+1 be two real functions, then find fog and gof .

If int(1)/(sqrt(2ax-x^(2)))dx= fog (x)+C , then

Find fog and gof if: f(x)=e^(x),g(x)=lnx