Home
Class 12
MATHS
"If " int e^(x^(3)+x^(2)-1)(3x^(4)+2x^(3...

`"If " int e^(x^(3)+x^(2)-1)(3x^(4)+2x^(3)+2x)dx=f(x)+C, " then the value of " f(1)xxf(-1) " is"-.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral problem, we start with the expression: \[ \int e^{(x^3 + x^2 - 1)} (3x^4 + 2x^3 + 2x) \, dx = f(x) + C \] We need to find the value of \( f(1) \times f(-1) \). ### Step 1: Identify the integral structure We can rewrite the integral by recognizing that the derivative of \( x^3 + x^2 - 1 \) is \( 3x^2 + 2x \). Thus, we can express the integral as: \[ \int e^{(x^3 + x^2 - 1)} (3x^4 + 2x^3 + 2x) \, dx = \int e^{(x^3 + x^2 - 1)} \left( x^2 (3x^2 + 2x) + 2x \right) \, dx \] ### Step 2: Split the integral We can split the integral into two parts: \[ \int e^{(x^3 + x^2 - 1)} x^2 (3x^2 + 2x) \, dx + 2 \int e^{(x^3 + x^2 - 1)} x \, dx \] ### Step 3: Apply integration by parts For the first integral, we will use integration by parts. Let: - \( u = x^2 \) - \( dv = e^{(x^3 + x^2 - 1)} (3x^2 + 2x) \, dx \) Then, we compute \( du \) and \( v \): - \( du = 2x \, dx \) - \( v = e^{(x^3 + x^2 - 1)} \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] ### Step 4: Calculate the integral After applying integration by parts, we find: \[ f(x) = x^2 e^{(x^3 + x^2 - 1)} - \int e^{(x^3 + x^2 - 1)} (2x) \, dx + 2 \int e^{(x^3 + x^2 - 1)} x \, dx \] ### Step 5: Simplify \( f(x) \) After simplification, we get: \[ f(x) = x^2 e^{(x^3 + x^2 - 1)} + C \] ### Step 6: Evaluate \( f(1) \) and \( f(-1) \) Now we compute \( f(1) \) and \( f(-1) \): 1. **Calculating \( f(1) \)**: \[ f(1) = 1^2 e^{(1^3 + 1^2 - 1)} = e^{(1 + 1 - 1)} = e^1 = e \] 2. **Calculating \( f(-1) \)**: \[ f(-1) = (-1)^2 e^{((-1)^3 + (-1)^2 - 1)} = 1 \cdot e^{(-1 + 1 - 1)} = e^{-1} = \frac{1}{e} \] ### Step 7: Calculate \( f(1) \times f(-1) \) Now, we find: \[ f(1) \times f(-1) = e \times \frac{1}{e} = 1 \] ### Final Answer Thus, the value of \( f(1) \times f(-1) \) is: \[ \boxed{1} \]

To solve the given integral problem, we start with the expression: \[ \int e^{(x^3 + x^2 - 1)} (3x^4 + 2x^3 + 2x) \, dx = f(x) + C \] We need to find the value of \( f(1) \times f(-1) \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE MAIN (Single Correct Answer Type)|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

"If " f(x)=int(dx)/(x^(1//3)+2) " and "f(0)=12log_(e)2, " then the value of " f(-1) " is"-.

If int((x-1)/(x^2))e^x dx=f(x)e^x+c , then write the value of f(x) .

If int((x-1)/(x^2))e^x\ dx=f(x)\ e^x+C , then write the value of f(x) .

If int(1)/(x^(2)+2x+2)dx=f (x) +C , then f (x)=

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

If int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2|+Blog(f(x))+c , then

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals

If 2f(x)+f(-x)=1/xsin(x-1/x) then the value of int_(1/e)^e f(x)d x is