Home
Class 12
MATHS
If int f(x)dx=psi(x), then int x^5f(x^3)...

If `int f(x)dx=psi(x)`, then `int x^5f(x^3)dx`

A

` (1)/(3)[x^(3)Psi(x^(3))-int x^(2) Psi(x^(3))dx]+c`

B

` (1)/(3)x^(3)Psi(x^(3))-3int x^(3) Psi(x^(3))dx+c`

C

` (1)/(3)x^(3)Psi(x^(3))-int x^(2) Psi(x^(3))dx+c`

D

` (1)/(3)[x^(3)Psi(x^(3))-int x^(3) Psi(x^(3))dx]+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int x^5 f(x^3) \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = x^3 \). Then, we differentiate to find \( dt \): \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] Also, from \( t = x^3 \), we have \( x = t^{1/3} \), so: \[ x^2 = (t^{1/3})^2 = t^{2/3} \] Substituting these into the integral gives: \[ I = \int x^5 f(x^3) \, dx = \int (t^{1/3})^5 f(t) \cdot \frac{dt}{3t^{2/3}} = \int \frac{t^{5/3} f(t)}{3t^{2/3}} \, dt = \frac{1}{3} \int t^{5/3 - 2/3} f(t) \, dt = \frac{1}{3} \int t^{1} f(t) \, dt \] ### Step 2: Apply Integration by Parts Now we can apply integration by parts to the integral \( \int t f(t) \, dt \). Let: - \( u = t \) (first function) - \( dv = f(t) \, dt \) (second function) Then, we differentiate and integrate: - \( du = dt \) - \( v = \psi(t) \) (since \( \int f(t) \, dt = \psi(t) \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int t f(t) \, dt = t \psi(t) - \int \psi(t) \, dt \] ### Step 3: Substitute Back Substituting back into our expression for \( I \): \[ I = \frac{1}{3} \left( t \psi(t) - \int \psi(t) \, dt \right) \] Now substituting \( t = x^3 \): \[ I = \frac{1}{3} \left( x^3 \psi(x^3) - \int \psi(x^3) \, dx \right) \] ### Final Result Thus, the final expression for the integral \( I \) is: \[ I = \frac{1}{3} \left( x^3 \psi(x^3) - \int \psi(x^3) \, dx \right) \]

To solve the integral \( I = \int x^5 f(x^3) \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = x^3 \). Then, we differentiate to find \( dt \): \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] Also, from \( t = x^3 \), we have \( x = t^{1/3} \), so: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Numerical Value Type)|10 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

If intf(x)= Psi(x)dx+C then intx^(5)f(x^3)dx is equal to

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

If f(2-x)=f(2+x) and f(4-x)=f(4+x) for all x and f(x) is a function for which int_0^2 f(x)dx=5 , then int_0^(50)f(x)dx is equal to

If int_0^af(2a-x)dx=m and int_0^af(x)dx=n, then int_0^(2a) f(x) dx is equal to

Let f(x) be a continuous function in R such that f(x) does not vanish for all x in R . If int_1^5 f(x)dx=int_-1^5 f(x)dx , then in R, f(x) is (A) an even function (B) an odd function (C) a periodic function with period 5 (D) none of these

STATEMENT-1 : If int(1)/(f(x))dx=2log|f(x)|+c , then f(x)=(x)/(2) . STATEMENT-2 : When f(x)=(x)/(2) , then int(1)/(f(x))dx=int(2)/(x)dx=2log|x|+c STATEMENT-3 : inte^(x^(2))dx=e^(x^(2))+c

If f(a+b-x) =f(x) , then int_(a)^(b) x f(x) dx is equal to

Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is