Home
Class 12
MATHS
The integral int(1+x-1/x)e^(x+1/x)dx is ...

The integral `int(1+x-1/x)e^(x+1/x)dx` is equal to

A

`(x-1)e^(x+(1)/(x))+c`

B

`xe^(x+(1)/(x))+c`

C

`(x+1)e^(x+(1)/(x))+c`

D

`-xe^(x+(1)/(x))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int (1 + x - \frac{1}{x}) e^{x + \frac{1}{x}} \, dx \), we can break it down into manageable parts. ### Step-by-Step Solution: 1. **Separate the Integral**: \[ I = \int (1 + x - \frac{1}{x}) e^{x + \frac{1}{x}} \, dx = \int e^{x + \frac{1}{x}} \, dx + \int x e^{x + \frac{1}{x}} \, dx - \int \frac{1}{x} e^{x + \frac{1}{x}} \, dx \] 2. **Let \( t = x + \frac{1}{x} \)**: To simplify the integral, we can use the substitution \( t = x + \frac{1}{x} \). Then, we differentiate: \[ dt = \left(1 - \frac{1}{x^2}\right) dx \quad \Rightarrow \quad dx = \frac{dt}{1 - \frac{1}{x^2}} \] 3. **Rewrite the Integral**: The integral now becomes: \[ I = \int e^t \, dt \] where \( 1 - \frac{1}{x^2} \) can be factored out from the \( x \) term. 4. **Integrate**: The integral of \( e^t \) is straightforward: \[ \int e^t \, dt = e^t + C \] 5. **Back Substitute**: Substitute back \( t = x + \frac{1}{x} \): \[ I = e^{x + \frac{1}{x}} + C \] 6. **Final Answer**: Thus, the integral evaluates to: \[ I = x e^{x + \frac{1}{x}} + C \]

To solve the integral \( I = \int (1 + x - \frac{1}{x}) e^{x + \frac{1}{x}} \, dx \), we can break it down into manageable parts. ### Step-by-Step Solution: 1. **Separate the Integral**: \[ I = \int (1 + x - \frac{1}{x}) e^{x + \frac{1}{x}} \, dx = \int e^{x + \frac{1}{x}} \, dx + \int x e^{x + \frac{1}{x}} \, dx - \int \frac{1}{x} e^{x + \frac{1}{x}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Numerical Value Type)|10 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to : (Here C is a constant of integration)

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

The integral int_(1)^(5) x^(2)dx is equal to

The value of int(x-1)e^(-x) dx is equal to

int(x+1)^(2)e^(x)dx is equal to

int(x e^x)/((1+x)^2)dx is equal to

integrate x^ x (1+logx)dx is equal to

int sqrt(e^(x)-1)dx is equal to

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

int(x-1)e^(3x)dx equals