Home
Class 12
MATHS
"The integral " int(dx)/(x^(2)(x^(4)+1)^...

`"The integral " int(dx)/(x^(2)(x^(4)+1)^(3//4))" equals"`

A

`((x^(4)+1)/(x^(4)))^(1//4)+c`

B

`(x^(4)+1)^(1//4)+c`

C

`-(x^(4)+1)^(1//4)+c`

D

`-((x^(4)+1)/(x^(4)))^(1//4)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{x^2 (x^4 + 1)^{3/4}}, \] we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form. We can factor out \(x^4\) from the denominator: \[ I = \int \frac{1}{x^2 (x^4 + 1)^{3/4}} \, dx = \int \frac{1}{x^2} \cdot \frac{1}{(x^4 + 1)^{3/4}} \, dx. \] ### Step 2: Factor Out \(x^4\) Next, we factor out \(x^4\) from the term \((x^4 + 1)^{3/4}\): \[ I = \int \frac{1}{x^2} \cdot \frac{1}{x^{3}} \cdot \frac{1}{(1 + \frac{1}{x^4})^{3/4}} \, dx. \] This simplifies to: \[ I = \int \frac{1}{x^5} \cdot \frac{1}{(1 + \frac{1}{x^4})^{3/4}} \, dx. \] ### Step 3: Substitution Now, we will use the substitution: \[ t = 1 + \frac{1}{x^4} \implies dt = -\frac{4}{x^5} \, dx \implies dx = -\frac{x^5}{4} \, dt. \] From the substitution, we also have: \[ \frac{1}{x^5} \, dx = -\frac{1}{4} \, dt. \] ### Step 4: Substitute Back into the Integral Substituting \(t\) and \(dx\) back into the integral gives: \[ I = \int -\frac{1}{4} t^{-3/4} \, dt. \] ### Step 5: Integrate Now we can integrate: \[ I = -\frac{1}{4} \cdot \left( \frac{t^{1/4}}{1/4} \right) + C = -t^{1/4} + C. \] ### Step 6: Substitute Back for \(t\) Now substitute back for \(t\): \[ I = -\left(1 + \frac{1}{x^4}\right)^{1/4} + C. \] ### Final Result Thus, the final result for the integral is: \[ I = -\left(1 + \frac{1}{x^4}\right)^{1/4} + C. \] ---

To solve the integral \[ I = \int \frac{dx}{x^2 (x^4 + 1)^{3/4}}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Numerical Value Type)|10 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int (dx)/(x^(2)(x^(4)+1)^(3/4))is

Evaluate: int(dx)/(x^2(x^4+1)^(3/4))

Evaluate: int(dx)/(x^2(x^4+1)^(3/4))

Evaluate: int(dx)/(x^2(x^4+1)^(3/4))

int1/(x^2(x^4+1)^(3/4)) dx

int1/(x^2(x^4+1)^(3/4))dx

Evaluate : int(dx)/(x^(2)(x^(4) + 1)^((3)/(4)))

The value of int1/(x^(2)(x^(4)+1)^(3//4)) dx is equal to

Integrate : int(dx)/((x+1)^(2)+1)

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals