Home
Class 12
MATHS
The integral int[2x^[12]+5x^9]/[x^5+x^3...

The integral `int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx` is equal to-
(A) `x^10 / (2(x^5 + x^3 +1)^2) `
(B) `x^5/ (2(x^5 + x^3 +1)^2) `
(C) `-x^10 / (2(x^5 + x^3 +1)^2) `
(D) `- x^5 / (2(x^5 + x^3 +1)^2) `

A

`(x^(10))/(2(x^(5)+x^(3)+1)^(2))+C`

B

`(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C`

C

`(-x^(10))/(2(x^(5)+x^(3)+1)^(2))`

D

`(-x^(5))/((x^(5)+x^(3)+1)^(2))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{2x^{12} + 5x^9}{(x^5 + x^3 + 1)^3} \, dx \] we will follow these steps: ### Step 1: Divide the numerator and denominator by the highest power of \(x\) The highest power in the denominator is \(x^5\) raised to the power of 3, which gives \(x^{15}\). Thus, we divide both the numerator and denominator by \(x^{15}\): \[ I = \int \frac{2x^{12}/x^{15} + 5x^9/x^{15}}{(x^5/x^5 + x^3/x^5 + 1/x^5)^3} \, dx \] This simplifies to: \[ I = \int \frac{2/x^3 + 5/x^6}{(1 + 1/x^2 + 1/x^5)^3} \, dx \] ### Step 2: Substitute \(t\) Let \[ t = 1 + \frac{1}{x^2} + \frac{1}{x^5} \] Now we need to find \(dt\): \[ dt = -\frac{2}{x^3} \, dx - \frac{5}{x^6} \, dx \] This implies: \[ dx = -\frac{x^3}{2 + 5/x^3} \, dt \] ### Step 3: Rewrite the integral in terms of \(t\) Substituting \(dx\) and the expression for \(t\) into the integral gives: \[ I = \int \frac{-dt}{t^3} \] ### Step 4: Integrate The integral of \(-\frac{1}{t^3}\) is: \[ \int -t^{-3} \, dt = \frac{1}{2} t^{-2} + C = \frac{1}{2} \cdot \frac{1}{t^2} + C \] ### Step 5: Substitute back for \(t\) Substituting back for \(t\): \[ I = \frac{1}{2} \cdot \frac{1}{\left(1 + \frac{1}{x^2} + \frac{1}{x^5}\right)^2} + C \] ### Step 6: Simplify This can be rewritten as: \[ I = \frac{1}{2} \cdot \frac{1}{\left(x^5 + x^3 + 1\right)^2} \cdot x^{10} \] ### Final Result Thus, the final answer is: \[ I = \frac{x^{10}}{2(x^5 + x^3 + 1)^2} + C \] ### Conclusion The correct option is (A) \[ \frac{x^{10}}{2(x^5 + x^3 + 1)^2} \]

To solve the integral \[ I = \int \frac{2x^{12} + 5x^9}{(x^5 + x^3 + 1)^3} \, dx \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Numerical Value Type)|10 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

x^2\ x\ \ 2y^3\ x\ \ 5x^3y^2 is equal to: (a) 10 x^2y^5 (b) 10 x^5y^2 (c) 10 x^5y^5 (d) x^5y^5

(x^2-1)/(2x+5)<3

(x^2-1)/(2x+5)<3

The integral int (sin^2xcos^2x)/(sin^5x+cos^3xsin^2x+sin^3xcos^2x+cos^5x)^2 dx is equal to

(2/3)^(-5)x\ (5/7)^(-5) is equal to (a) (2/3x5/7)^(-10) (b) (2/3x5/7)^(-5) (c) (2/3x5/7)^(25) (d) (2/3x5/7)^(-25)

Evaluate: int_1^3(2x^2+5x)dx

Evaluate: int_1^3(2x^2+5x)dx

If 3x - (1)/(3x ) =5 , find : (i) 9x^(2) + (1)/( 9x^2)

2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …] is equal to ,