Home
Class 12
MATHS
Let In=int tan^n x dx, (n>1). If I4+I6...

Let `I_n=int tan^n x dx, (n>1)`. If `I_4+I_6=a tan^5 x + bx^5 + C`, Where `C` is a constant of integration, then the ordered pair `(a,b)` is equal to :

A

`(-(1)/(5),0)`

B

`(-(1)/(5),1)`

C

`((1)/(5),0)`

D

`((1)/(5),-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ordered pair \((a, b)\) such that: \[ I_4 + I_6 = a \tan^5 x + b x^5 + C \] where \(I_n = \int \tan^n x \, dx\) for \(n > 1\). ### Step-by-step Solution: 1. **Write the expression for \(I_4 + I_6\)**: \[ I_4 + I_6 = \int \tan^4 x \, dx + \int \tan^6 x \, dx \] 2. **Combine the integrals**: \[ I_4 + I_6 = \int (\tan^4 x + \tan^6 x) \, dx \] 3. **Factor out \(\tan^4 x\)**: \[ I_4 + I_6 = \int \tan^4 x (1 + \tan^2 x) \, dx \] 4. **Use the identity \(1 + \tan^2 x = \sec^2 x\)**: \[ I_4 + I_6 = \int \tan^4 x \sec^2 x \, dx \] 5. **Substitute \(t = \tan x\)**, then \(dt = \sec^2 x \, dx\): \[ I_4 + I_6 = \int t^4 \, dt \] 6. **Integrate \(t^4\)**: \[ \int t^4 \, dt = \frac{t^5}{5} + C = \frac{\tan^5 x}{5} + C \] 7. **Rewrite the expression**: \[ I_4 + I_6 = \frac{\tan^5 x}{5} + C \] 8. **Compare with the given format**: \[ I_4 + I_6 = a \tan^5 x + b x^5 + C \] From this, we can see that: - \(a = \frac{1}{5}\) - \(b = 0\) 9. **Final ordered pair**: \[ (a, b) = \left(\frac{1}{5}, 0\right) \] ### Final Answer: The ordered pair \((a, b)\) is \(\left(\frac{1}{5}, 0\right)\).

To solve the problem, we need to find the ordered pair \((a, b)\) such that: \[ I_4 + I_6 = a \tan^5 x + b x^5 + C \] where \(I_n = \int \tan^n x \, dx\) for \(n > 1\). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Numerical Value Type)|10 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int (2x + 5 )/(sqrt(7 - 6 x - x ^ 2 )) dx = A sqrt (7 - 6x - x ^ 2 ) + B sin ^ ( -1) (( x + 3 )/( 4 ) ) + C (Where C is a constant of integration), then the ordered pair (A, B) is equal to :

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

If the integral I=int(dx)/(x^(10)+x)=lambda ln ((x^(9))/(1+x^(mu)))+C , (where, C is the constant of integration) then the value of (1)/(lambda)+mu is equal to

If int tan^(5)xex=Atan^(4)x+Btan^(x)+g(x)+C , where C is constant of integration and g(0)=0, then

If I_(n)-int(lnx)^(n)dx, then I_(10)+10I_(9) is equal to (where C is the constant of integration)

If the integral I= ∫e^(5ln x)(x^(6)+1)^(-1)dx=lamdaln (x^(6)+1)+C , (where C is the constant of integration) then the value of (1)/(lambda) is

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

The integral I=int sec^(3)x tan^(3)xdx is equal to (where, C is the constant of integration)

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

The integral I=int2^((2^(x)+x))dx=lambda. (2^(2^(x)))+C (where, C is the constant of integration). Then the value of sqrtlambda is equal to