Home
Class 12
MATHS
Evaluate:int \ (sin^2x cos^2x)/(sin^5x+c...

Evaluate:`int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x + cos^5x)^2 \ dx`

A

`(-1)/(1+cot^(3)x)+C`

B

`(1)/(3(1+tan^(3)x))+C`

C

`(-1)/(3(1+tan^(3)x))+C`

D

`(1)/(1+cot^(3)x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{\sin^2 x \cos^2 x}{(\sin^5 x + \cos^3 x \sin^2 x + \sin^3 x \cos^2 x + \cos^5 x)^2} \, dx, \] we will follow these steps: ### Step 1: Simplify the Integral We start by rewriting the integral \(I\): \[ I = \int \frac{\sin^2 x \cos^2 x}{(\sin^5 x + \cos^3 x \sin^2 x + \sin^3 x \cos^2 x + \cos^5 x)^2} \, dx. \] ### Step 2: Divide by \(\cos^{10} x\) To simplify the expression, we divide both the numerator and denominator by \(\cos^{10} x\): \[ I = \int \frac{\frac{\sin^2 x \cos^2 x}{\cos^{10} x}}{\left(\frac{\sin^5 x}{\cos^{10} x} + \frac{\cos^3 x \sin^2 x}{\cos^{10} x} + \frac{\sin^3 x \cos^2 x}{\cos^{10} x} + \frac{\cos^5 x}{\cos^{10} x}\right)^2} \, dx. \] This gives us: \[ I = \int \frac{\tan^2 x}{(\tan^5 x + \tan^3 x + \tan^2 x + 1)^2} \sec^6 x \, dx. \] ### Step 3: Factor the Denominator Next, we can factor the denominator: \[ \tan^5 x + \tan^3 x + \tan^2 x + 1 = (\tan^2 x + 1)(\tan^3 x + 1). \] Thus, we have: \[ I = \int \frac{\tan^2 x \sec^6 x}{(\tan^2 x + 1)^2 (\tan^3 x + 1)^2} \, dx. \] ### Step 4: Substitute \(t = \tan^3 x + 1\) Let \(t = \tan^3 x + 1\). Then, we differentiate: \[ dt = 3\tan^2 x \sec^2 x \, dx \implies dx = \frac{dt}{3\tan^2 x \sec^2 x}. \] ### Step 5: Substitute in the Integral Substituting \(dx\) into the integral gives: \[ I = \int \frac{\tan^2 x \sec^6 x}{(\tan^2 x + 1)^2 t^2} \cdot \frac{dt}{3\tan^2 x \sec^2 x}. \] This simplifies to: \[ I = \frac{1}{3} \int \frac{\sec^4 x}{(\tan^2 x + 1)^2 t^2} \, dt. \] ### Step 6: Evaluate the Integral Now, we know that \(\tan^2 x + 1 = \sec^2 x\), so we can rewrite the integral: \[ I = \frac{1}{3} \int \frac{1}{t^2} \, dt. \] The integral of \(t^{-2}\) is: \[ \int t^{-2} \, dt = -\frac{1}{t} + C. \] ### Step 7: Substitute Back Substituting back for \(t\): \[ I = -\frac{1}{3} \cdot \frac{1}{\tan^3 x + 1} + C. \] ### Final Answer Thus, the evaluated integral is: \[ I = -\frac{1}{3(\tan^3 x + 1)} + C. \]

To evaluate the integral \[ I = \int \frac{\sin^2 x \cos^2 x}{(\sin^5 x + \cos^3 x \sin^2 x + \sin^3 x \cos^2 x + \cos^5 x)^2} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Numerical Value Type)|10 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(sin^2x cos^2x)\ dx

The integral int (sin^2xcos^2x)/(sin^5x+cos^3xsin^2x+sin^3xcos^2x+cos^5x)^2 dx is equal to

Evaluate: int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)\ dx

Evaluate: int(sin^2x)/(cos^6x)\ dx

Evaluate: int(sin2x(1-3/2cosx))/e^(sin^2x+cos^3x)dx

Evaluate : int_(0)^(pi/2)(sin^2x-cos^2x)/(sin^3x+cos^3x)dx

Evaluate: int(cos^3x)/(sin^2x+sinx)dx

Evaluate: int(cos^3x)/(sin^2x+sinx)dx

Evaluate: int(sin2x)/(a^2sin^2x+b^2cos^2x)\ dx

Evaluate: int(sin2x)/(a^2sin^2x+b^2cos^2x)\ dx