Home
Class 12
MATHS
Prove that (r(1) -r)/(a) + (r(2) -r)/(b)...

Prove that `(r_(1) -r)/(a) + (r_(2) -r)/(b) = (c)/(r_(3))`

Text Solution

Verified by Experts

`(r_(1) -r)/(a) + (r_(2) -r)/(b) = ((Delta)/(s-a) - (Delta)/(s))/(a) + ((Delta)/(s-b) -(Delta)/(s))/(b)`
`= (Delta (s-s +a))/(a(s-a)s) + (Delta(s-s + b))/(s(s -b)b)`
`= (Delta)/(s(s-a)) + (Delta)/(s(s -b))`
`= (Delta)/(s) ((s-b + s-a)/((s -a) (s-b)))`
`= (Delta)/(s) (c (s-c))/((s-a) (s-b) (s-c))`
`= (Delta c(s -c))/(Delta^(2))`
`= (c)/(r_(3))`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.11|4 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Exercises|80 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.9|5 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

Prove that (r_(1+r_2))/1=2R

Prove that r_(1) r_(2) + r_(2) r_(3) + r_(3) r_(1) = (1)/(4) (a + b + c)^(2)

Prove that (r_1-r)(r_2-r)(r_3-r)=4R r^2

If r_(1), r_(2) ,r_(3) are the ex-radii of DeltaABC, then prove that (bc)/(r_(1))+(ca)/(r _(2))+(ab)/(r _(3))=2R [((a)/(b)+(b)/a)+((b)/(c)+(c)/(b))+((c)/(a)+ (a)/(c))-3]

Let ABC be a triangle with incentre I and inradius r. Let D, E, F be the feet of the perpendiculars from I to the sides BC, CA and AB, respectively, If r_(2)" and "r_(3) are the radii of circles inscribed in the quadrilaterls AFIE, BDIF and CEID respectively, then prove that r_(1)/(r-r_(1))+r_(2)/(r-r_(2))+r_(3)/(r-r_(3))=(r_(1)r_(2)r_(3))/((r-r_(1))(r-r_(2))(r-r_(3)))

Prove that (r_(2) + r_(3))/(1 + cos A) = (r_(3) + r_(1))/(1 + cos B) = (r_(1) + r_(2))/(1+ cos C)

Prove that : 1/(r_1)+1/(r_2)+1/(r_3)=1/r

Prove that (r_1+r_2)/(1+cosC)=2R

Prove that : (r_1)/(b c)+(r_2)/(c a)+(r_3)/(a b)=1/r-1/(2R)

Prove that : (r_1+r_2) tan (C )/(2) = (r_3- r) cot ( C)/(2) = c