Home
Class 12
MATHS
If Delta represents the area of acute an...

If `Delta` represents the area of acute angled triangle ABC `sqrt(a^(2)b^(2) -4Delta^(2)) + sqrt(b^(2) c^(2) -4Delta^(2)) + sqrt(c^(2) a^(2) -4Delta^(2))=`

A

`a^(2)+ b^(2) + c^(2)`

B

`(a^(2) + b^(2) + c^(2))/(2)`

C

`ab cos C + bc cos A + ca cos B`

D

`ab sin C + bc sin A + ca sin B`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sqrt{a^2b^2 - 4\Delta^2} + \sqrt{b^2c^2 - 4\Delta^2} + \sqrt{c^2a^2 - 4\Delta^2} \] where \(\Delta\) is the area of triangle \(ABC\). ### Step 1: Use the formula for the area of a triangle We know that the area \(\Delta\) of triangle \(ABC\) can be expressed in terms of its sides \(a\), \(b\), and \(c\) as: \[ \Delta = \frac{1}{2}ab \sin C = \frac{1}{2}bc \sin A = \frac{1}{2}ca \sin B \] ### Step 2: Substitute \(\Delta\) into the expression We can express \(4\Delta^2\) as follows: \[ 4\Delta^2 = 4\left(\frac{1}{2}ab \sin C\right)^2 = a^2b^2 \sin^2 C \] Thus, we can rewrite \(a^2b^2 - 4\Delta^2\): \[ a^2b^2 - 4\Delta^2 = a^2b^2 - a^2b^2 \sin^2 C = a^2b^2(1 - \sin^2 C) = a^2b^2 \cos^2 C \] ### Step 3: Apply the same for the other terms Similarly, we can derive the other two terms: \[ b^2c^2 - 4\Delta^2 = b^2c^2 \cos^2 A \] \[ c^2a^2 - 4\Delta^2 = c^2a^2 \cos^2 B \] ### Step 4: Substitute back into the original expression Now substituting these results back into the original expression: \[ \sqrt{a^2b^2 \cos^2 C} + \sqrt{b^2c^2 \cos^2 A} + \sqrt{c^2a^2 \cos^2 B} \] This simplifies to: \[ ab \cos C + bc \cos A + ca \cos B \] ### Step 5: Use the cosine rule Using the cosine rule, we know that: \[ ab \cos C + bc \cos A + ca \cos B = \frac{1}{2}(a^2 + b^2 + c^2) \] ### Final Result Thus, we conclude that: \[ \sqrt{a^2b^2 - 4\Delta^2} + \sqrt{b^2c^2 - 4\Delta^2} + \sqrt{c^2a^2 - 4\Delta^2} = \frac{1}{2}(a^2 + b^2 + c^2) \] ### Conclusion The correct answer is: \[ \frac{a^2 + b^2 + c^2}{2} \]

To solve the problem, we need to evaluate the expression: \[ \sqrt{a^2b^2 - 4\Delta^2} + \sqrt{b^2c^2 - 4\Delta^2} + \sqrt{c^2a^2 - 4\Delta^2} \] where \(\Delta\) is the area of triangle \(ABC\). ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Linked comprehension type|34 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Matrix match type|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Exercises|80 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

If Delta represents the area of acute angled triangle ABC, then sqrt(a^2b^2-4Delta^2)+sqrt(b^2c^2-4Delta^2)+sqrt(c^2a^2-4Delta^2)= (a) a^2+b^2+c^2 (b) (a^2+b^2+c^2)/2 (c) a bcosC+bc cosA+c acosB (d) a bsinC+b csinA+c asinB

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

Find the value of tan A, if area of Delta ABC is a^(2) -(b-c)^(2).

In a triangle ! ABC, a^2cos^2A=b^2+c^2 then

If Delta = a^(2)-(b-c)^(2), Delta is the area of the Delta ABC then tan A = ?

The area of an acute triangle ABC is Delta , the area of its pedal triangle is 'p' , where cos B=(2p)/(Delta) and sin B=(2sqrt(3)p)/(Delta) . The value of 8(cos^(2)A cos B+cos^(2)C) is

The angles of a triangle ABC are in A.P and b:c = sqrt(3) : sqrt(2) find angle A

The ratio of angles in a triangle ABC is 2:3:7 then prove that a:b:c=sqrt2:2:(sqrt3+1)

In a triangle ABC, a^2cos^2A=b^2+c^2 then triangle is

CENGAGE ENGLISH-PROPERTIES AND SOLUTIONS OF TRIANGLE-Multiple correct answer type
  1. In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4...

    Text Solution

    |

  2. If in triangle ABC, a, c and angle A are given and c sin A lt a lt c, ...

    Text Solution

    |

  3. If area of DeltaABC (Delta) and angle C are given and if c opposite to...

    Text Solution

    |

  4. If Delta represents the area of acute angled triangle ABC sqrt(a^(2)b^...

    Text Solution

    |

  5. Sides of DeltaABC are in A.P. If a lt "min" {b,c}, then cos A may be e...

    Text Solution

    |

  6. If the angles of a triangle are 30^(@) and 45^(@), and the included si...

    Text Solution

    |

  7. Lengths of the tangents from A,B and C to the incircle are in A.P., th...

    Text Solution

    |

  8. C F is the internal bisector of angle C of A B C , then C F is equal ...

    Text Solution

    |

  9. The incircle of DeltaABC touches side BC at D. The difference between ...

    Text Solution

    |

  10. A circle of radius 4 cm is inscribed in DeltaABC, which touches side B...

    Text Solution

    |

  11. If H is the orthocentre of triangle ABC, R = circumradius and P = AH +...

    Text Solution

    |

  12. Let ABC be an isosceles triangle with base BC. If r is the radius of t...

    Text Solution

    |

  13. If inside a big circle exactly n(nlt=3) small circles, each of radius ...

    Text Solution

    |

  14. The area of a regular polygon of n sides is (where r is inradius, R is...

    Text Solution

    |

  15. In acute angled triangle A B C ,A D is the altitude. Circle drawn with...

    Text Solution

    |

  16. If A is the area and 2s is the sum of the sides of a triangle, then Al...

    Text Solution

    |

  17. In A B C , internal angle bisector of /A meets side B C in D . DE|A D...

    Text Solution

    |

  18. In a triangle ABC, AB = 5 , BC = 7, AC = 6. A point P is in the plane ...

    Text Solution

    |

  19. The base B C of A B C is fixed and the vertex A moves, satisfying the...

    Text Solution

    |

  20. If D,E and F are the middle points of the sides BC,CA and AB of the De...

    Text Solution

    |