Home
Class 12
MATHS
Find the fundamental period of f(x)=cosx...

Find the fundamental period of `f(x)=cosxcos2xcos3xdot`

Text Solution

AI Generated Solution

The correct Answer is:
To find the fundamental period of the function \( f(x) = \cos x \cdot \cos 2x \cdot \cos 3x \), we will follow these steps: ### Step 1: Identify the periods of the individual cosine functions The period of \( \cos x \) is \( 2\pi \). For \( \cos 2x \): \[ \text{Period} = \frac{2\pi}{2} = \pi \] For \( \cos 3x \): \[ \text{Period} = \frac{2\pi}{3} \] ### Step 2: Find the least common multiple (LCM) of the periods We have the periods: - \( 2\pi \) - \( \pi \) - \( \frac{2\pi}{3} \) To find the LCM, we express these periods in a common form: - \( 2\pi = \frac{6\pi}{3} \) - \( \pi = \frac{3\pi}{3} \) - \( \frac{2\pi}{3} = \frac{2\pi}{3} \) The LCM of \( \frac{6\pi}{3}, \frac{3\pi}{3}, \frac{2\pi}{3} \) is \( \frac{6\pi}{3} = 2\pi \). ### Step 3: Verify if \( 2\pi \) is the fundamental period We need to check if \( f(x) = f(x + 2\pi) \): \[ f(x + 2\pi) = \cos(x + 2\pi) \cdot \cos(2(x + 2\pi)) \cdot \cos(3(x + 2\pi)) \] Using the periodic property of cosine: \[ \cos(x + 2\pi) = \cos x, \quad \cos(2(x + 2\pi)) = \cos(2x), \quad \cos(3(x + 2\pi)) = \cos(3x) \] Thus, \[ f(x + 2\pi) = \cos x \cdot \cos 2x \cdot \cos 3x = f(x) \] ### Step 4: Check for smaller periods Next, we check if \( \pi \) is a period: \[ f(x + \pi) = \cos(x + \pi) \cdot \cos(2(x + \pi)) \cdot \cos(3(x + \pi)) \] Using the periodic properties: \[ \cos(x + \pi) = -\cos x, \quad \cos(2(x + \pi)) = -\cos 2x, \quad \cos(3(x + \pi)) = -\cos 3x \] Thus, \[ f(x + \pi) = (-\cos x) \cdot (-\cos 2x) \cdot (-\cos 3x) = -\cos x \cdot \cos 2x \cdot \cos 3x \neq f(x) \] ### Conclusion Since \( f(x + \pi) \neq f(x) \), \( \pi \) is not a period. Therefore, the fundamental period of \( f(x) \) is: \[ \text{Fundamental Period} = 2\pi \]

To find the fundamental period of the function \( f(x) = \cos x \cdot \cos 2x \cdot \cos 3x \), we will follow these steps: ### Step 1: Identify the periods of the individual cosine functions The period of \( \cos x \) is \( 2\pi \). For \( \cos 2x \): \[ \text{Period} = \frac{2\pi}{2} = \pi ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.12|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.13|7 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.10|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Fundamental period of f(x)=sec(sin x) is

What is the fundamental period of f(x) = (sin x+ sin 3x)/(cos x+ cos 3x)

What is the fundamental period of f(x) = (sin x+ sin 3x)/(cos x+ cos 3x)

lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is 4pi , then the value of a is/are

If f: RvecR is a function satisfying the property f(2x+3)+f(2x+7)=2AAx in R , then find the fundamental period of f(x)dot

Find the fundamental period of the following function: f(x)=2+3cos(x-2)

Find the fundamental period of the following function: f(x)=sin 3x+cos^(2)x+|tanx|

Find the fundamental period of the following function: f(x)="cos"3/5 x-"sin"2/7x .

Find the fundamental period of the following function: f(x)=sec^(3)x+cosec^(3)x

Find the fundamental period of the following function: f(x)=1/(1-cosx)