Home
Class 12
MATHS
The value of sin(pi/14)sin(3pi/14)sin(5p...

The value of `sin(pi/14)sin(3pi/14)sin(5pi/14)sin(7pi/14)sin(9pi/14)sin(11pi/14)sin(13pi/14)` is equal to___________

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \[ \sin\left(\frac{\pi}{14}\right) \sin\left(\frac{3\pi}{14}\right) \sin\left(\frac{5\pi}{14}\right) \sin\left(\frac{7\pi}{14}\right) \sin\left(\frac{9\pi}{14}\right) \sin\left(\frac{11\pi}{14}\right) \sin\left(\frac{13\pi}{14}\right), \] we can simplify the expression step by step. ### Step 1: Simplify \(\sin\left(\frac{7\pi}{14}\right)\) First, we note that \[ \sin\left(\frac{7\pi}{14}\right) = \sin\left(\frac{\pi}{2}\right) = 1. \] So we can rewrite the expression as: \[ \sin\left(\frac{\pi}{14}\right) \sin\left(\frac{3\pi}{14}\right) \sin\left(\frac{5\pi}{14}\right) \cdot 1 \cdot \sin\left(\frac{9\pi}{14}\right) \sin\left(\frac{11\pi}{14}\right) \sin\left(\frac{13\pi}{14}\right). \] ### Step 2: Use the property of sine Next, we use the property of sine that states: \[ \sin\left(\pi - x\right) = \sin x. \] This allows us to rewrite: - \(\sin\left(\frac{9\pi}{14}\right) = \sin\left(\pi - \frac{5\pi}{14}\right) = \sin\left(\frac{5\pi}{14}\right)\), - \(\sin\left(\frac{11\pi}{14}\right) = \sin\left(\pi - \frac{3\pi}{14}\right) = \sin\left(\frac{3\pi}{14}\right)\), - \(\sin\left(\frac{13\pi}{14}\right) = \sin\left(\pi - \frac{\pi}{14}\right) = \sin\left(\frac{\pi}{14}\right)\). ### Step 3: Substitute back into the expression Now substituting these back into the expression, we have: \[ \sin\left(\frac{\pi}{14}\right) \sin\left(\frac{3\pi}{14}\right) \sin\left(\frac{5\pi}{14}\right) \cdot 1 \cdot \sin\left(\frac{5\pi}{14}\right) \sin\left(\frac{3\pi}{14}\right) \sin\left(\frac{\pi}{14}\right). \] ### Step 4: Combine like terms This simplifies to: \[ \left(\sin\left(\frac{\pi}{14}\right)\right)^2 \left(\sin\left(\frac{3\pi}{14}\right)\right)^2 \left(\sin\left(\frac{5\pi}{14}\right)\right)^2. \] ### Step 5: Use a known product identity There is a known identity for the product of sines: \[ \sin\left(\frac{\pi}{14}\right) \sin\left(\frac{3\pi}{14}\right) \sin\left(\frac{5\pi}{14}\right) = \frac{\sqrt{7}}{8}. \] ### Step 6: Square the result Thus, we have: \[ \left(\sin\left(\frac{\pi}{14}\right) \sin\left(\frac{3\pi}{14}\right) \sin\left(\frac{5\pi}{14}\right)\right)^2 = \left(\frac{\sqrt{7}}{8}\right)^2 = \frac{7}{64}. \] ### Final Answer Therefore, the value of \[ \sin\left(\frac{\pi}{14}\right) \sin\left(\frac{3\pi}{14}\right) \sin\left(\frac{5\pi}{14}\right) \sin\left(\frac{7\pi}{14}\right) \sin\left(\frac{9\pi}{14}\right) \sin\left(\frac{11\pi}{14}\right) \sin\left(\frac{13\pi}{14}\right) = \frac{7}{64}. \]

To find the value of the expression \[ \sin\left(\frac{\pi}{14}\right) \sin\left(\frac{3\pi}{14}\right) \sin\left(\frac{5\pi}{14}\right) \sin\left(\frac{7\pi}{14}\right) \sin\left(\frac{9\pi}{14}\right) \sin\left(\frac{11\pi}{14}\right) \sin\left(\frac{13\pi}{14}\right), \] we can simplify the expression step by step. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.7|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.8|9 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.5|6 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The value of sinpi/(14)sin(3pi)/(14)sin(5pi)/(14)sin(7pi)/(14)sin(9pi)/(14)sin(11pi)/(14)sin(13pi)/(14) is equal to___________

sin(9pi)/14sin(11pi)/14sin(13pi)/14 is equal to

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

sin(pi/18)*sin(5pi/18)*sin(7pi/18)

Prove that: sin(pi/14)sin((3pi)/14)sin((5pi)/14)sin((7pi)/14)sin((9pi)/14)sin((11pi)/14)sin((13pi)/14)=1/(64)

The value of sin(pi/18)+sin(pi/9)+sin((2pi)/9)+sin((5pi)/18) is

The value of sin^(-1)(sin((3pi)/(5)))

the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

The value of sin""(pi)/(10)sin""(13pi)/(10) is