Home
Class 12
MATHS
Let a1,a2,a3 ...... a11 be real numbers ...

Let a1,a2,a3 ...... a11 be real numbers satisfying `a_1 =15, 27-2a_2 > 0 and a_k= 2a_(k-1) - a_(k-2)` for `k=3,4,.....11` If `(a1^2 +a2^2.......a11^2)/11 = 90` then find the value of `(a_1+a_2....+a_11)/11`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given conditions and derive the necessary values. ### Step 1: Understand the given conditions We have: - \( a_1 = 15 \) - \( 27 - 2a_2 > 0 \) implies \( a_2 < \frac{27}{2} = 13.5 \) - The recurrence relation \( a_k = 2a_{k-1} - a_{k-2} \) for \( k = 3, 4, \ldots, 11 \) ### Step 2: Identify the general form of the sequence The recurrence relation suggests that the sequence \( a_k \) is an arithmetic progression (AP). The general term of an AP can be expressed as: \[ a_k = a_1 + (k-1)d \] where \( d \) is the common difference. ### Step 3: Write the first few terms Using \( a_1 = 15 \): - \( a_2 = 15 + d \) - \( a_3 = 15 + 2d \) - \( a_4 = 15 + 3d \) - Continuing this way, we can express \( a_k \) for \( k = 1, 2, \ldots, 11 \): \[ a_k = 15 + (k-1)d \] ### Step 4: Calculate the sum of squares We need to evaluate: \[ \frac{a_1^2 + a_2^2 + \ldots + a_{11}^2}{11} = 90 \] Calculating \( a_k^2 \): \[ a_k^2 = (15 + (k-1)d)^2 = 225 + 2 \cdot 15 \cdot (k-1)d + (k-1)^2 d^2 \] Thus, we can sum these from \( k = 1 \) to \( k = 11 \): \[ \sum_{k=1}^{11} a_k^2 = \sum_{k=1}^{11} \left( 225 + 30(k-1)d + (k-1)^2 d^2 \right) \] This simplifies to: \[ \sum_{k=1}^{11} a_k^2 = 11 \cdot 225 + 30d \sum_{k=1}^{11} (k-1) + d^2 \sum_{k=1}^{11} (k-1)^2 \] ### Step 5: Calculate the sums - \( \sum_{k=1}^{11} (k-1) = 0 + 1 + 2 + \ldots + 10 = \frac{10 \cdot 11}{2} = 55 \) - \( \sum_{k=1}^{11} (k-1)^2 = 0^2 + 1^2 + 2^2 + \ldots + 10^2 = \frac{10 \cdot 11 \cdot 21}{6} = 385 \) ### Step 6: Substitute back into the equation Now substituting these values back: \[ \sum_{k=1}^{11} a_k^2 = 2475 + 30d \cdot 55 + d^2 \cdot 385 \] Setting this equal to \( 990 \) (since \( 90 \times 11 = 990 \)): \[ 2475 + 1650d + 385d^2 = 990 \] This simplifies to: \[ 385d^2 + 1650d + 1485 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula: \[ d = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1650 \pm \sqrt{1650^2 - 4 \cdot 385 \cdot 1485}}{2 \cdot 385} \] Calculating the discriminant: \[ b^2 - 4ac = 2722500 - 2284200 = 438300 \] Calculating \( d \): \[ d = \frac{-1650 \pm \sqrt{438300}}{770} \] This gives us two possible values for \( d \). ### Step 8: Find the average of the sequence Now we need to find \( \frac{a_1 + a_2 + \ldots + a_{11}}{11} \): \[ \frac{a_1 + a_2 + \ldots + a_{11}}{11} = \frac{11 \cdot 15 + 55d}{11} = 15 + d \] ### Step 9: Substitute \( d \) and find the final answer Substituting the valid value of \( d \) (the one that satisfies \( a_2 < 13.5 \)), we can find the average. ### Final Answer The final value of \( \frac{a_1 + a_2 + \ldots + a_{11}}{11} \) is \( 0 \).

To solve the problem step by step, we will analyze the given conditions and derive the necessary values. ### Step 1: Understand the given conditions We have: - \( a_1 = 15 \) - \( 27 - 2a_2 > 0 \) implies \( a_2 < \frac{27}{2} = 13.5 \) - The recurrence relation \( a_k = 2a_{k-1} - a_{k-2} \) for \( k = 3, 4, \ldots, 11 \) ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise Single correct Answer|54 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|66 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MULTIPLE CORRECT ANSWERS TYPE )|1 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Let a_1, a_2, a_3, ,a_(11) be real numbers satisfying a_1=15 , 27-2a_2>0 a n da_k=2a_(k-1)-a_(k-2) for k=3,4, , 11. If (a1 2+a2 2+...+a 11 2)/(11)=90 , then the value of (a1+a2++a 11)/(11) is equals to _______.

If a_1+a_2+a_3+......+a_n=1 AA a_i > 0, i=1,2,3,......,n , then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n .

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

A sequence a_1,a_2,a_3, ... is defined by letting a_1=3 a n d a_k=7a_(k-1) for natural numbers k ,kgeq2. Show that a_n=3.7_n-1 for all n in N .

Consider an A. P .a_1,a_2,a_3,..... such that a_3+a_5+a_8 =11and a_4+a_2=-2 then the value of a_1+a_6+a_7 is.....

Let a_1,a_2,a_3…., a_49 be in A.P . Such that Sigma_(k=0)^(12) a_(4k+1)=416 and a_9+a_(43)=66 .If a_1^2+a_2^2 +…+ a_(17) = 140 m then m is equal to

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+.......a_(n-1)+2a_n is