Home
Class 12
MATHS
lim(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]=...

`lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]=` (where `[.]` denotes the greatest integer integer function)

A

0

B

1

C

`-1`

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} \frac{[\sin x] - [\cos x] + 1}{3} \), where \([.]\) denotes the greatest integer function, we will analyze the left-hand limit (LHL) and the right-hand limit (RHL) separately. ### Step 1: Evaluate the Left-Hand Limit (LHL) As \( x \) approaches \( \frac{\pi}{2} \) from the left (\( x < \frac{\pi}{2} \)): - The value of \( \sin x \) approaches \( 1 \) (but is less than \( 1 \)). - The value of \( \cos x \) approaches \( 0 \) (but is greater than \( -1 \)). Thus: - \( [\sin x] = 0 \) (since \( \sin x \) is in the range \( [0, 1) \)). - \( [\cos x] = 0 \) (since \( \cos x \) is in the range \( [0, 1) \)). Now substituting these values into the limit: \[ \text{LHL} = \frac{0 - 0 + 1}{3} = \frac{1}{3} \] Now, applying the greatest integer function: \[ [\frac{1}{3}] = 0 \] ### Step 2: Evaluate the Right-Hand Limit (RHL) As \( x \) approaches \( \frac{\pi}{2} \) from the right (\( x > \frac{\pi}{2} \)): - The value of \( \sin x \) approaches \( 1 \) (but is still less than \( 1 \)). - The value of \( \cos x \) approaches \( 0 \) (but is less than \( 0 \)). Thus: - \( [\sin x] = 0 \) (since \( \sin x \) is still in the range \( [0, 1) \)). - \( [\cos x] = -1 \) (since \( \cos x \) is in the range \( (-1, 0) \)). Now substituting these values into the limit: \[ \text{RHL} = \frac{0 - (-1) + 1}{3} = \frac{0 + 1 + 1}{3} = \frac{2}{3} \] Now, applying the greatest integer function: \[ [\frac{2}{3}] = 0 \] ### Step 3: Conclusion Since both the left-hand limit and the right-hand limit yield the same result: \[ \text{LHL} = 0 \quad \text{and} \quad \text{RHL} = 0 \] Thus, the limit exists and is equal to: \[ \lim_{x \to \frac{\pi}{2}} \frac{[\sin x] - [\cos x] + 1}{3} = 0 \] ### Final Answer \[ \boxed{0} \]

To solve the limit \( \lim_{x \to \frac{\pi}{2}} \frac{[\sin x] - [\cos x] + 1}{3} \), where \([.]\) denotes the greatest integer function, we will analyze the left-hand limit (LHL) and the right-hand limit (RHL) separately. ### Step 1: Evaluate the Left-Hand Limit (LHL) As \( x \) approaches \( \frac{\pi}{2} \) from the left (\( x < \frac{\pi}{2} \)): - The value of \( \sin x \) approaches \( 1 \) (but is less than \( 1 \)). - The value of \( \cos x \) approaches \( 0 \) (but is greater than \( -1 \)). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

lim_(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest integer function)

Evaluate ("lim")_(x->(5pi)/4) [sinx+cosx], where [.] denotes the greatest integer function.

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

Evaluate: lim_(xto(5pi)/(4)) [sinx+cosx] , [.] denotes the greatest integer function.

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

Evaluate lim_(xto0) (sin[cosx])/(1+[cosx]) ( [.] denotes the greatest integer function).

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. If f: RvecR is defined by f(x)=[x-3]+|x-4| for x in R , then (lim)(xv...

    Text Solution

    |

  2. lim(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greate...

    Text Solution

    |

  3. lim(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest ...

    Text Solution

    |

  4. Iff(x)={x+1/2, x<0 2x+3/4,x >+0 , then [(lim)(xvec0)f(x)]= (where [.] ...

    Text Solution

    |

  5. lim(xrarr-7) ([x]^(2)+15[x]+56)/(sin(x+7)sin(x+8))= (where [.] denote...

    Text Solution

    |

  6. Which of the following limits exists finitely?

    Text Solution

    |

  7. Let L(1)=lim(xrarr4) (x-6)^(x)and L(2)=lim(xrarr4) (x-6)^(4). Which ...

    Text Solution

    |

  8. Set of all values of x such that lim(nrarroo) (1)/(1+((4tan^(-1)(2pix)...

    Text Solution

    |

  9. lim(xrarroo) [x-log(e)((e^(x)+e^(-x))/(2))]=

    Text Solution

    |

  10. lim(xrarroo) {(e^(x)+pi^(x))^((1)/(x))}= (where {.} denotes the fracti...

    Text Solution

    |

  11. If (cos x)/(sin ax) is periodic function, then lim(mrarroo)(1+cos^(2...

    Text Solution

    |

  12. The value of lim(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  13. lim(xrarr(pi)/(2)) (1-sinx)tanx=

    Text Solution

    |

  14. The value of lim(xrarroo) x^(2)(1-cos.(1)/(x)) is

    Text Solution

    |

  15. lim(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=

    Text Solution

    |

  16. lim(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

    Text Solution

    |

  17. undersetlim(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes ...

    Text Solution

    |

  18. lim(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)}...

    Text Solution

    |

  19. lim(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

    Text Solution

    |

  20. lim(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest...

    Text Solution

    |