Home
Class 12
MATHS
lim(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (w...

`lim_(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]=` (where [.] denotes the greatest integer function)

A

`-9`

B

`-12`

C

`-6`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to -\frac{1}{3}} \frac{1}{x} \left[ -\frac{1}{x} \right] \), where \([.]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Identify the limit point We need to evaluate the limit as \( x \) approaches \( -\frac{1}{3} \). Since \( x \) is approaching \( -\frac{1}{3} \), we will consider values of \( x \) that are less than \( -\frac{1}{3} \). ### Step 2: Calculate \( \frac{1}{x} \) As \( x \) approaches \( -\frac{1}{3} \) from the left (i.e., \( x < -\frac{1}{3} \)), we can compute: \[ \frac{1}{x} \to \frac{1}{-\frac{1}{3}} = -3 \] Thus, \( \frac{1}{x} \) will be greater than \( -3 \) for \( x < -\frac{1}{3} \). ### Step 3: Calculate \( -\frac{1}{x} \) Next, we compute: \[ -\frac{1}{x} \to -\left(-3\right) = 3 \] This means that as \( x \) approaches \( -\frac{1}{3} \), \( -\frac{1}{x} \) approaches \( 3 \). ### Step 4: Apply the greatest integer function Now we need to evaluate \( \left[-\frac{1}{x}\right] \). Since \( -\frac{1}{x} \) approaches \( 3 \) from the left (as \( x \) approaches \( -\frac{1}{3} \)), the greatest integer function will yield: \[ \left[-\frac{1}{x}\right] = 2 \] because the greatest integer less than \( 3 \) is \( 2 \). ### Step 5: Substitute back into the limit Now we substitute back into our limit: \[ \lim_{x \to -\frac{1}{3}} \frac{1}{x} \left[-\frac{1}{x}\right] = \lim_{x \to -\frac{1}{3}} \frac{1}{x} \cdot 2 \] As \( x \) approaches \( -\frac{1}{3} \): \[ \frac{1}{x} \to -3 \] Thus, we have: \[ \lim_{x \to -\frac{1}{3}} \frac{1}{x} \cdot 2 = -3 \cdot 2 = -6 \] ### Final Answer Therefore, the limit is: \[ \boxed{-6} \]

To solve the limit problem \( \lim_{x \to -\frac{1}{3}} \frac{1}{x} \left[ -\frac{1}{x} \right] \), where \([.]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Identify the limit point We need to evaluate the limit as \( x \) approaches \( -\frac{1}{3} \). Since \( x \) is approaching \( -\frac{1}{3} \), we will consider values of \( x \) that are less than \( -\frac{1}{3} \). ### Step 2: Calculate \( \frac{1}{x} \) As \( x \) approaches \( -\frac{1}{3} \) from the left (i.e., \( x < -\frac{1}{3} \)), we can compute: \[ ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

Let f(3)=4 and f'(3)=5 . Then lim_(xrarr3) [f(x)] (where [.] denotes the greatest integer function) is

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greatest integer integer function)

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. If f: RvecR is defined by f(x)=[x-3]+|x-4| for x in R , then (lim)(xv...

    Text Solution

    |

  2. lim(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greate...

    Text Solution

    |

  3. lim(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest ...

    Text Solution

    |

  4. Iff(x)={x+1/2, x<0 2x+3/4,x >+0 , then [(lim)(xvec0)f(x)]= (where [.] ...

    Text Solution

    |

  5. lim(xrarr-7) ([x]^(2)+15[x]+56)/(sin(x+7)sin(x+8))= (where [.] denote...

    Text Solution

    |

  6. Which of the following limits exists finitely?

    Text Solution

    |

  7. Let L(1)=lim(xrarr4) (x-6)^(x)and L(2)=lim(xrarr4) (x-6)^(4). Which ...

    Text Solution

    |

  8. Set of all values of x such that lim(nrarroo) (1)/(1+((4tan^(-1)(2pix)...

    Text Solution

    |

  9. lim(xrarroo) [x-log(e)((e^(x)+e^(-x))/(2))]=

    Text Solution

    |

  10. lim(xrarroo) {(e^(x)+pi^(x))^((1)/(x))}= (where {.} denotes the fracti...

    Text Solution

    |

  11. If (cos x)/(sin ax) is periodic function, then lim(mrarroo)(1+cos^(2...

    Text Solution

    |

  12. The value of lim(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  13. lim(xrarr(pi)/(2)) (1-sinx)tanx=

    Text Solution

    |

  14. The value of lim(xrarroo) x^(2)(1-cos.(1)/(x)) is

    Text Solution

    |

  15. lim(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=

    Text Solution

    |

  16. lim(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

    Text Solution

    |

  17. undersetlim(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes ...

    Text Solution

    |

  18. lim(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)}...

    Text Solution

    |

  19. lim(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

    Text Solution

    |

  20. lim(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest...

    Text Solution

    |