Home
Class 12
MATHS
lim(xrarr-7) ([x]^(2)+15[x]+56)/(sin(x+7...

`lim_(xrarr-7) ([x]^(2)+15[x]+56)/(sin(x+7)sin(x+8))=` (where [.] denotes the greatest integer function)

A

is 0

B

is 1

C

is `-1`

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to -7} \frac{[x]^2 + 15[x] + 56}{\sin(x + 7) \sin(x + 8)} \] where \([x]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Determine the value of \([x]\) as \(x\) approaches \(-7\) As \(x\) approaches \(-7\), the greatest integer function \([x]\) will equal \(-8\) for values of \(x\) slightly less than \(-7\) (i.e., \(x \to -7^-\)), and it will equal \(-7\) for values of \(x\) slightly greater than \(-7\) (i.e., \(x \to -7^+\)). ### Step 2: Evaluate the numerator For \(x \to -7^-\): \[ [x] = -8 \implies [x]^2 + 15[x] + 56 = (-8)^2 + 15(-8) + 56 = 64 - 120 + 56 = 0 \] For \(x \to -7^+\): \[ [x] = -7 \implies [x]^2 + 15[x] + 56 = (-7)^2 + 15(-7) + 56 = 49 - 105 + 56 = 0 \] ### Step 3: Evaluate the denominator Now, we evaluate the denominator \(\sin(x + 7) \sin(x + 8)\): As \(x \to -7\): - For \(x \to -7^-\): \[ \sin(x + 7) = \sin(0) = 0 \quad \text{and} \quad \sin(x + 8) = \sin(1) \neq 0 \] - For \(x \to -7^+\): \[ \sin(x + 7) = \sin(0) = 0 \quad \text{and} \quad \sin(x + 8) = \sin(1) \neq 0 \] ### Step 4: Apply L'Hôpital's Rule Since both the numerator and denominator approach \(0\) as \(x \to -7\), we can apply L'Hôpital's Rule. We differentiate the numerator and denominator: 1. Differentiate the numerator: \[ \frac{d}{dx}([x]^2 + 15[x] + 56) = 0 \quad \text{(since \([x]\) is constant in intervals)} \] 2. Differentiate the denominator: \[ \frac{d}{dx}(\sin(x + 7) \sin(x + 8)) = \cos(x + 7) \sin(x + 8) + \sin(x + 7) \cos(x + 8) \] ### Step 5: Evaluate the limit again Now we evaluate the limit again using L'Hôpital's Rule: For \(x \to -7\): - The numerator is \(0\). - The denominator becomes: \[ \cos(-7 + 7) \sin(-7 + 8) + \sin(-7 + 7) \cos(-7 + 8) = \cos(0) \sin(1) + 0 = 1 \cdot \sin(1) = \sin(1) \neq 0 \] Thus, we have: \[ \lim_{x \to -7} \frac{0}{\sin(1)} = 0 \] ### Conclusion The limit is: \[ \lim_{x \to -7} \frac{[x]^2 + 15[x] + 56}{\sin(x + 7) \sin(x + 8)} = 0 \]

To solve the limit \[ \lim_{x \to -7} \frac{[x]^2 + 15[x] + 56}{\sin(x + 7) \sin(x + 8)} \] where \([x]\) denotes the greatest integer function, we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

(lim)_(X-> (-7)([x]^2+15[x]+56)/("sin"(x+7)"sin"(x+8))= (where [.] denotes the greatest integer function) a. is 0 b. is 1 c. is -1 d. does not exist

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest integer function)

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

f(x)=1/([abs(x-2}]+[abs(x-10)]-8) where [*] denotes the greatest integer function.

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. lim(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest ...

    Text Solution

    |

  2. Iff(x)={x+1/2, x<0 2x+3/4,x >+0 , then [(lim)(xvec0)f(x)]= (where [.] ...

    Text Solution

    |

  3. lim(xrarr-7) ([x]^(2)+15[x]+56)/(sin(x+7)sin(x+8))= (where [.] denote...

    Text Solution

    |

  4. Which of the following limits exists finitely?

    Text Solution

    |

  5. Let L(1)=lim(xrarr4) (x-6)^(x)and L(2)=lim(xrarr4) (x-6)^(4). Which ...

    Text Solution

    |

  6. Set of all values of x such that lim(nrarroo) (1)/(1+((4tan^(-1)(2pix)...

    Text Solution

    |

  7. lim(xrarroo) [x-log(e)((e^(x)+e^(-x))/(2))]=

    Text Solution

    |

  8. lim(xrarroo) {(e^(x)+pi^(x))^((1)/(x))}= (where {.} denotes the fracti...

    Text Solution

    |

  9. If (cos x)/(sin ax) is periodic function, then lim(mrarroo)(1+cos^(2...

    Text Solution

    |

  10. The value of lim(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  11. lim(xrarr(pi)/(2)) (1-sinx)tanx=

    Text Solution

    |

  12. The value of lim(xrarroo) x^(2)(1-cos.(1)/(x)) is

    Text Solution

    |

  13. lim(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=

    Text Solution

    |

  14. lim(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

    Text Solution

    |

  15. undersetlim(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes ...

    Text Solution

    |

  16. lim(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)}...

    Text Solution

    |

  17. lim(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

    Text Solution

    |

  18. lim(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest...

    Text Solution

    |

  19. The value of lim(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

    Text Solution

    |

  20. The value of lim(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1))) is

    Text Solution

    |