Home
Class 12
MATHS
lim(xrarroo) [x-log(e)((e^(x)+e^(-x))/(2...

`lim_(xrarroo) [x-log_(e)((e^(x)+e^(-x))/(2))]=`

A

`log_(e)4`

B

0

C

`log_(e)2`

D

`oo`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left[ x - \log_e \left( \frac{e^x + e^{-x}}{2} \right) \right] \), we will follow these steps: ### Step 1: Rewrite the logarithm We start by rewriting the logarithmic term: \[ \log_e \left( \frac{e^x + e^{-x}}{2} \right) = \log_e (e^x + e^{-x}) - \log_e(2) \] Thus, we can express the limit as: \[ L = \lim_{x \to \infty} \left[ x - \log_e (e^x + e^{-x}) + \log_e(2) \right] \] ### Step 2: Simplify \( e^x + e^{-x} \) As \( x \to \infty \), \( e^{-x} \) approaches 0, so: \[ e^x + e^{-x} \approx e^x \] Thus, we can approximate: \[ \log_e (e^x + e^{-x}) \approx \log_e (e^x) = x \] ### Step 3: Substitute back into the limit Substituting this approximation back into our limit gives: \[ L = \lim_{x \to \infty} \left[ x - x + \log_e(2) \right] \] This simplifies to: \[ L = \lim_{x \to \infty} \log_e(2) = \log_e(2) \] ### Final Result Thus, the limit evaluates to: \[ \boxed{\log_e(2)} \] ---

To solve the limit \( \lim_{x \to \infty} \left[ x - \log_e \left( \frac{e^x + e^{-x}}{2} \right) \right] \), we will follow these steps: ### Step 1: Rewrite the logarithm We start by rewriting the logarithmic term: \[ \log_e \left( \frac{e^x + e^{-x}}{2} \right) = \log_e (e^x + e^{-x}) - \log_e(2) \] Thus, we can express the limit as: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_xvecoo[x-log_e((e^x+e^(-x))/2)]= a) (log)_e4 b. 0 c. oo d. (log)_e2

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

lim_(x rarr0)(log_(e)(1+x)-x)/(x^(2))=-(1)/(2)

lim_(xrarre) (log_(e)x-1)/(|x-e|) is

lim_(xrarroo) x^(2)sin(log_(e)sqrt(cos(pi)/(x)))

The value of lim_(xrarroo)(e^(x+1)log(x^(3)e^(-x)+1))/(sin^(3)(2x)) is equal to (Use e = 2.7)

lim_(xrarroo) {(e^(x)+pi^(x))^((1)/(x))} = (where {.} denotes the fractional part of x ) is equal to

The value of lim_(xrarr3) ((x^(3)+27)log_(e)(x-2))/(x^(2)-9) is

lim_(xrarr0) (e^(tanx)-e^x)/(tanx-x)=

The value of lim_(xrarroo)[(e)/((1+(1)/(x))^(x))]^(x) is equal to

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. Let L(1)=lim(xrarr4) (x-6)^(x)and L(2)=lim(xrarr4) (x-6)^(4). Which ...

    Text Solution

    |

  2. Set of all values of x such that lim(nrarroo) (1)/(1+((4tan^(-1)(2pix)...

    Text Solution

    |

  3. lim(xrarroo) [x-log(e)((e^(x)+e^(-x))/(2))]=

    Text Solution

    |

  4. lim(xrarroo) {(e^(x)+pi^(x))^((1)/(x))}= (where {.} denotes the fracti...

    Text Solution

    |

  5. If (cos x)/(sin ax) is periodic function, then lim(mrarroo)(1+cos^(2...

    Text Solution

    |

  6. The value of lim(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  7. lim(xrarr(pi)/(2)) (1-sinx)tanx=

    Text Solution

    |

  8. The value of lim(xrarroo) x^(2)(1-cos.(1)/(x)) is

    Text Solution

    |

  9. lim(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=

    Text Solution

    |

  10. lim(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

    Text Solution

    |

  11. undersetlim(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes ...

    Text Solution

    |

  12. lim(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)}...

    Text Solution

    |

  13. lim(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

    Text Solution

    |

  14. lim(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest...

    Text Solution

    |

  15. The value of lim(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

    Text Solution

    |

  16. The value of lim(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1))) is

    Text Solution

    |

  17. The value of lim(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

    Text Solution

    |

  18. (lim)(xvecpi/2)((1-sin x)(8x^3-pi^3)cos x)/((pi-2x)^4) a.(pi^2)/6 b...

    Text Solution

    |

  19. lim(xrarroo) (sum(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

    Text Solution

    |

  20. If lim(xrarr0) (f(x))/(x^(2))=a and lim(xrarr0) (f(1-cosx))/(g(x)sin^(...

    Text Solution

    |