Home
Class 12
MATHS
If (cos x)/(sin ax) is periodic function...

If `(cos x)/(sin ax)` is periodic function, then
` lim_(mrarroo)(1+cos^(2m)n!pia)` is equal to

A

0

B

1

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the periodicity of the function \(\frac{\cos x}{\sin ax}\) and then evaluate the limit given in the question. ### Step-by-Step Solution: 1. **Understanding Periodicity**: A function is periodic if it repeats its values at regular intervals. For the function \(\frac{\cos x}{\sin ax}\) to be periodic, \(a\) must be a rational number. This is because the sine function has a period of \(2\pi\), and for the quotient to also be periodic, the argument of the sine function must yield rational multiples of \(\pi\). 2. **Setting Up the Limit**: We need to evaluate the limit: \[ \lim_{m \to \infty} \left(1 + \cos^{2m} (n \pi a)\right) \] 3. **Analyzing \(\cos^{2m}(n \pi a)\)**: The value of \(\cos(n \pi a)\) will depend on whether \(n \pi a\) is an integer multiple of \(\pi\) or not. If \(a\) is rational, say \(a = \frac{p}{q}\) where \(p\) and \(q\) are integers, then \(n \pi a = n \frac{p}{q} \pi\) will take values that are multiples of \(\pi\) for integer \(n\). 4. **Finding the Behavior of \(\cos^{2m}(n \pi a)\)**: - If \(n \pi a\) is an integer multiple of \(\pi\), then \(\cos(n \pi a) = \cos(k \pi) = (-1)^k\) for some integer \(k\). Thus, \(\cos^{2m}(n \pi a) = 1\). - If \(n \pi a\) is not an integer multiple of \(\pi\), then \(|\cos(n \pi a)| < 1\) and as \(m\) approaches infinity, \(\cos^{2m}(n \pi a)\) approaches \(0\). 5. **Evaluating the Limit**: - If \(\cos(n \pi a) = 1\), then: \[ \lim_{m \to \infty} \left(1 + \cos^{2m}(n \pi a)\right) = 1 + 1 = 2 \] - If \(|\cos(n \pi a)| < 1\), then: \[ \lim_{m \to \infty} \left(1 + \cos^{2m}(n \pi a)\right) = 1 + 0 = 1 \] 6. **Conclusion**: Since \(a\) is rational, the limit will depend on the specific values of \(n\) and \(a\). However, since we are asked for the limit as \(m\) approaches infinity and considering the periodic nature of the function, the most general case leads us to conclude that the limit evaluates to \(2\) if \(n \pi a\) is an integer multiple of \(\pi\). Thus, the final answer is: \[ \boxed{2} \]

To solve the problem, we need to analyze the periodicity of the function \(\frac{\cos x}{\sin ax}\) and then evaluate the limit given in the question. ### Step-by-Step Solution: 1. **Understanding Periodicity**: A function is periodic if it repeats its values at regular intervals. For the function \(\frac{\cos x}{\sin ax}\) to be periodic, \(a\) must be a rational number. This is because the sine function has a period of \(2\pi\), and for the quotient to also be periodic, the argument of the sine function must yield rational multiples of \(\pi\). 2. **Setting Up the Limit**: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

lim_(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

lim_(ntooo)(sin^(n)1+cos^(n)1)^(n) is equal to

Let f(x) = sin a x+ cos bx be a periodic function, then

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

The value of lim_(xrarr0)(cos x+sin bx)^((a)/(x)) is equal to

The value fo lim_(xrarr0)(1-cos^(4)x)/((sin^(2)xcos x)) is equal to

lim_{x\rightarrow 0}(1-cos2x)/(sin^(2)2x) is equal to

The value of lim_(xrarr 0) (1-cos(1-cos x))/(x^4) is equal to

lim_{x\rightarrow 0}(1-cosmx)/(1-cos nx) is equal to

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. lim(xrarroo) [x-log(e)((e^(x)+e^(-x))/(2))]=

    Text Solution

    |

  2. lim(xrarroo) {(e^(x)+pi^(x))^((1)/(x))}= (where {.} denotes the fracti...

    Text Solution

    |

  3. If (cos x)/(sin ax) is periodic function, then lim(mrarroo)(1+cos^(2...

    Text Solution

    |

  4. The value of lim(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  5. lim(xrarr(pi)/(2)) (1-sinx)tanx=

    Text Solution

    |

  6. The value of lim(xrarroo) x^(2)(1-cos.(1)/(x)) is

    Text Solution

    |

  7. lim(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=

    Text Solution

    |

  8. lim(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

    Text Solution

    |

  9. undersetlim(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes ...

    Text Solution

    |

  10. lim(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)}...

    Text Solution

    |

  11. lim(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

    Text Solution

    |

  12. lim(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest...

    Text Solution

    |

  13. The value of lim(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

    Text Solution

    |

  14. The value of lim(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1))) is

    Text Solution

    |

  15. The value of lim(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

    Text Solution

    |

  16. (lim)(xvecpi/2)((1-sin x)(8x^3-pi^3)cos x)/((pi-2x)^4) a.(pi^2)/6 b...

    Text Solution

    |

  17. lim(xrarroo) (sum(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

    Text Solution

    |

  18. If lim(xrarr0) (f(x))/(x^(2))=a and lim(xrarr0) (f(1-cosx))/(g(x)sin^(...

    Text Solution

    |

  19. If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt...

    Text Solution

    |

  20. If k in I such that lim(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^...

    Text Solution

    |