Home
Class 12
MATHS
The value of lim(xrarr0) (sqrt(1-cosx^(2...

The value of `lim_(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x)` is

A

`(1)/(2)`

B

`2`

C

`sqrt2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( L = \lim_{x \to 0} \frac{\sqrt{1 - \cos(x^2)}}{1 - \cos x} \), we will follow these steps: ### Step 1: Rewrite the limit using trigonometric identities We know that \( 1 - \cos \theta = 2 \sin^2\left(\frac{\theta}{2}\right) \). Therefore, we can rewrite both the numerator and the denominator: \[ 1 - \cos(x^2) = 2 \sin^2\left(\frac{x^2}{2}\right) \] \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \] Now substituting these into our limit gives: \[ L = \lim_{x \to 0} \frac{\sqrt{2 \sin^2\left(\frac{x^2}{2}\right)}}{2 \sin^2\left(\frac{x}{2}\right)} \] ### Step 2: Simplify the expression The square root in the numerator can be simplified: \[ L = \lim_{x \to 0} \frac{\sqrt{2} \sin\left(\frac{x^2}{2}\right)}{2 \sin^2\left(\frac{x}{2}\right)} \] ### Step 3: Factor out constants We can factor out the constant \( \frac{\sqrt{2}}{2} \): \[ L = \frac{\sqrt{2}}{2} \lim_{x \to 0} \frac{\sin\left(\frac{x^2}{2}\right)}{\sin^2\left(\frac{x}{2}\right)} \] ### Step 4: Apply the limit Using the limit property \( \lim_{y \to 0} \frac{\sin y}{y} = 1 \), we rewrite the limit: \[ L = \frac{\sqrt{2}}{2} \lim_{x \to 0} \frac{\sin\left(\frac{x^2}{2}\right)}{\frac{x^2}{2}} \cdot \frac{\frac{x^2}{2}}{\sin^2\left(\frac{x}{2}\right)} \] ### Step 5: Rewrite the sine terms Now, we can express \( \sin\left(\frac{x}{2}\right) \) in terms of \( x \): \[ \sin\left(\frac{x}{2}\right) \approx \frac{x}{2} \text{ as } x \to 0 \] Thus, \( \sin^2\left(\frac{x}{2}\right) \approx \left(\frac{x}{2}\right)^2 = \frac{x^2}{4} \). ### Step 6: Substitute and simplify Now substituting back into our limit gives: \[ L = \frac{\sqrt{2}}{2} \lim_{x \to 0} \frac{\sin\left(\frac{x^2}{2}\right)}{\frac{x^2}{2}} \cdot \frac{\frac{x^2}{2}}{\frac{x^2}{4}} = \frac{\sqrt{2}}{2} \lim_{x \to 0} 2 \cdot \frac{\sin\left(\frac{x^2}{2}\right)}{\frac{x^2}{2}} = \sqrt{2} \] ### Final Result Thus, the value of the limit is: \[ L = \sqrt{2} \]

To solve the limit \( L = \lim_{x \to 0} \frac{\sqrt{1 - \cos(x^2)}}{1 - \cos x} \), we will follow these steps: ### Step 1: Rewrite the limit using trigonometric identities We know that \( 1 - \cos \theta = 2 \sin^2\left(\frac{\theta}{2}\right) \). Therefore, we can rewrite both the numerator and the denominator: \[ 1 - \cos(x^2) = 2 \sin^2\left(\frac{x^2}{2}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr0)((1-cos x)/x^2)

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

Evaluate lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)

The value of (lim)x->0(sqrt(1-cos"x"^2))/(1-cosx) is a. 1/2 b. 2 c. sqrt(2) d. none of these

Evaluate lim_(xrarr0)((1-cosx))/(x^(2))

lim_(xrarr0) (3sqrt(1+x-1))/(x)

The value of lim_(xrarr0)(cosx)^(cotx) , is

The value of lim_(xrarr0)(1-cos^(3)x)/(xsinxcosx)

The value fo lim_(xrarr0)(1-cos^(4)x)/((sin^(2)xcos x)) is equal to

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. lim(xrarroo) {(e^(x)+pi^(x))^((1)/(x))}= (where {.} denotes the fracti...

    Text Solution

    |

  2. If (cos x)/(sin ax) is periodic function, then lim(mrarroo)(1+cos^(2...

    Text Solution

    |

  3. The value of lim(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  4. lim(xrarr(pi)/(2)) (1-sinx)tanx=

    Text Solution

    |

  5. The value of lim(xrarroo) x^(2)(1-cos.(1)/(x)) is

    Text Solution

    |

  6. lim(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=

    Text Solution

    |

  7. lim(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

    Text Solution

    |

  8. undersetlim(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes ...

    Text Solution

    |

  9. lim(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)}...

    Text Solution

    |

  10. lim(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

    Text Solution

    |

  11. lim(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest...

    Text Solution

    |

  12. The value of lim(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

    Text Solution

    |

  13. The value of lim(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1))) is

    Text Solution

    |

  14. The value of lim(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

    Text Solution

    |

  15. (lim)(xvecpi/2)((1-sin x)(8x^3-pi^3)cos x)/((pi-2x)^4) a.(pi^2)/6 b...

    Text Solution

    |

  16. lim(xrarroo) (sum(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

    Text Solution

    |

  17. If lim(xrarr0) (f(x))/(x^(2))=a and lim(xrarr0) (f(1-cosx))/(g(x)sin^(...

    Text Solution

    |

  18. If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt...

    Text Solution

    |

  19. If k in I such that lim(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^...

    Text Solution

    |

  20. If a(n) and b(n) are positive integers and a(n)+sqrt2b(n)=(2+sqrt2))^(...

    Text Solution

    |