Home
Class 12
MATHS
undersetlim(Xrarr2^(+)) {x}(sin(x-2))/((...

`undersetlim_(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))=` (where `{.}` denotes the fractional part function)

A

0

B

2

C

1

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we need to evaluate: \[ \lim_{x \to 2^+} \frac{\sin(x - 2)}{(x - 2)^2} \] ### Step 1: Substitute \( y = x - 2 \) As \( x \to 2^+ \), \( y \to 0^+ \). Thus, we can rewrite the limit in terms of \( y \): \[ \lim_{y \to 0^+} \frac{\sin(y)}{y^2} \] ### Step 2: Use the limit property of sine We know that: \[ \lim_{y \to 0} \frac{\sin(y)}{y} = 1 \] This implies: \[ \sin(y) \approx y \quad \text{as } y \to 0 \] ### Step 3: Rewrite the limit Using the approximation, we can rewrite the limit as: \[ \lim_{y \to 0^+} \frac{\sin(y)}{y^2} = \lim_{y \to 0^+} \frac{y}{y^2} = \lim_{y \to 0^+} \frac{1}{y} \] ### Step 4: Evaluate the limit As \( y \to 0^+ \), \( \frac{1}{y} \) approaches \( +\infty \). Therefore, we have: \[ \lim_{y \to 0^+} \frac{\sin(y)}{y^2} = +\infty \] ### Step 5: Determine the fractional part Since the limit approaches \( +\infty \), we need to find the fractional part of \( +\infty \). The fractional part function, denoted by \( \{x\} \), is defined as \( x - \lfloor x \rfloor \). Since \( +\infty \) does not have a finite integer part, the fractional part does not exist. ### Conclusion Thus, we conclude: \[ \lim_{x \to 2^+} \left\{ \frac{\sin(x - 2)}{(x - 2)^2} \right\} \text{ does not exist.} \] ### Final Answer The answer is that the limit does not exist. ---

To solve the limit problem given, we need to evaluate: \[ \lim_{x \to 2^+} \frac{\sin(x - 2)}{(x - 2)^2} \] ### Step 1: Substitute \( y = x - 2 \) ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

lim_(xrarr2)(x^3-8)/(sin(x-2))

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

lim x→(2^+) { x } sin( x−2 ) /( x−2)^2 = (where [.] denotes the fractional part function) a. 0 b. 2 c. 1 d. does not exist

Solve : x^(2) = {x} , where {x} represents the fractional part function.

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

If f(x) ={x} + sin ax (where { } denotes the fractional part function) is periodic, then

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function

If f(x)={x^2}-({x})^2, where (x) denotes the fractional part of x, then

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. lim(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=

    Text Solution

    |

  2. lim(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

    Text Solution

    |

  3. undersetlim(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes ...

    Text Solution

    |

  4. lim(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)}...

    Text Solution

    |

  5. lim(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

    Text Solution

    |

  6. lim(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest...

    Text Solution

    |

  7. The value of lim(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

    Text Solution

    |

  8. The value of lim(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1))) is

    Text Solution

    |

  9. The value of lim(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

    Text Solution

    |

  10. (lim)(xvecpi/2)((1-sin x)(8x^3-pi^3)cos x)/((pi-2x)^4) a.(pi^2)/6 b...

    Text Solution

    |

  11. lim(xrarroo) (sum(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

    Text Solution

    |

  12. If lim(xrarr0) (f(x))/(x^(2))=a and lim(xrarr0) (f(1-cosx))/(g(x)sin^(...

    Text Solution

    |

  13. If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt...

    Text Solution

    |

  14. If k in I such that lim(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^...

    Text Solution

    |

  15. If a(n) and b(n) are positive integers and a(n)+sqrt2b(n)=(2+sqrt2))^(...

    Text Solution

    |

  16. The value of (lim(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log...

    Text Solution

    |

  17. The value of lim(xrarr3) ((x^(3)+27)log(e)(x-2))/(x^(2)-9) is

    Text Solution

    |

  18. The value of lim(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log(e)(1-2x^...

    Text Solution

    |

  19. lim(xrarr0) (1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(...

    Text Solution

    |

  20. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |