Home
Class 12
MATHS
lim(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))...

`lim_(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)})=`

A

1

B

`0`

C

`pi//2`

D

non existent

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \frac{\cot^{-1}(\sqrt{x+1} + \sqrt{x})}{\sec^{-1}\left(\left(\frac{2x+1}{x-1}\right)^x\right)}, \] we will analyze the numerator and denominator separately. ### Step 1: Analyze the Numerator The numerator is \(\cot^{-1}(\sqrt{x+1} + \sqrt{x})\). 1. As \(x \to \infty\), we can simplify \(\sqrt{x+1}\): \[ \sqrt{x+1} = \sqrt{x(1 + \frac{1}{x})} = \sqrt{x} \sqrt{1 + \frac{1}{x}} \approx \sqrt{x} \left(1 + \frac{1}{2x}\right) \text{ (using Taylor expansion)} \] Thus, \[ \sqrt{x+1} \approx \sqrt{x} + \frac{1}{2\sqrt{x}}. \] Therefore, \[ \sqrt{x+1} + \sqrt{x} \approx 2\sqrt{x} + \frac{1}{2\sqrt{x}}. \] 2. As \(x \to \infty\), \(\sqrt{x+1} + \sqrt{x} \to 2\sqrt{x}\). 3. Now, we take the limit: \[ \cot^{-1}(2\sqrt{x}) \to \cot^{-1}(\infty) = 0. \] ### Step 2: Analyze the Denominator The denominator is \(\sec^{-1}\left(\left(\frac{2x+1}{x-1}\right)^x\right)\). 1. Simplifying the expression inside the secant: \[ \frac{2x+1}{x-1} = \frac{2 + \frac{1}{x}}{1 - \frac{1}{x}} \to 2 \text{ as } x \to \infty. \] Therefore, \[ \left(\frac{2x+1}{x-1}\right)^x \to 2^x. \] 2. Now, we compute the limit: \[ \sec^{-1}(2^x) \to \sec^{-1}(\infty) = \frac{\pi}{2}. \] ### Step 3: Combine the Results Now we can combine the results from the numerator and denominator: \[ \lim_{x \to \infty} \frac{\cot^{-1}(\sqrt{x+1} + \sqrt{x})}{\sec^{-1}\left(\left(\frac{2x+1}{x-1}\right)^x\right)} = \frac{0}{\frac{\pi}{2}} = 0. \] ### Final Answer Thus, the limit is \[ \boxed{0}. \]

To solve the limit \[ \lim_{x \to \infty} \frac{\cot^{-1}(\sqrt{x+1} + \sqrt{x})}{\sec^{-1}\left(\left(\frac{2x+1}{x-1}\right)^x\right)}, \] we will analyze the numerator and denominator separately. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Which of the following is/are true? (a) lim_(x->oo)((2+x)^(40)(4+x)^5)/((2-x)^(45))=1 (b) lim_(x->0)(1-cos^3x)/(xsinxcosx)=3/2 (c) lim_(x->0)(ln(1+2x)-2"ln"(1+x))/(x^2)=-1 (d) lim_(x->oo)(cot^(-1)(sqrt(x+1)-sqrt(x)))/(sec^1((2x+1)/(x-1)^2)=1

lim_(xrarroo) (2x)/(1+4x)

lim_(xrarroo) (sqrt(x^2+2x-1)-x)=

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(xrarr 1) (sqrt(4+x)-sqrt(5))/(x-1)

lim_(xrarroo) (sqrt(x+sqrt(x+sqrt(x)))) - sqrtx

lim_(x rarr1)(sqrt(1+x)+sqrt(1-x))/(1+x)

lim_(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

lim_(x->1)sqrt(x+8)/sqrtx

lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)+1))

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. lim(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

    Text Solution

    |

  2. undersetlim(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes ...

    Text Solution

    |

  3. lim(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)}...

    Text Solution

    |

  4. lim(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

    Text Solution

    |

  5. lim(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest...

    Text Solution

    |

  6. The value of lim(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

    Text Solution

    |

  7. The value of lim(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1))) is

    Text Solution

    |

  8. The value of lim(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

    Text Solution

    |

  9. (lim)(xvecpi/2)((1-sin x)(8x^3-pi^3)cos x)/((pi-2x)^4) a.(pi^2)/6 b...

    Text Solution

    |

  10. lim(xrarroo) (sum(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

    Text Solution

    |

  11. If lim(xrarr0) (f(x))/(x^(2))=a and lim(xrarr0) (f(1-cosx))/(g(x)sin^(...

    Text Solution

    |

  12. If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt...

    Text Solution

    |

  13. If k in I such that lim(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^...

    Text Solution

    |

  14. If a(n) and b(n) are positive integers and a(n)+sqrt2b(n)=(2+sqrt2))^(...

    Text Solution

    |

  15. The value of (lim(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log...

    Text Solution

    |

  16. The value of lim(xrarr3) ((x^(3)+27)log(e)(x-2))/(x^(2)-9) is

    Text Solution

    |

  17. The value of lim(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log(e)(1-2x^...

    Text Solution

    |

  18. lim(xrarr0) (1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(...

    Text Solution

    |

  19. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  20. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |