Home
Class 12
MATHS
The value of lim(xrarr(pi)/(4)) (sqrt(1-...

The value of `lim_(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x)` is

A

`(1)/(4)`

B

`-(1)/(4)`

C

1

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{1 - \sqrt{\sin 2x}}}{\pi - 4x} \), we will proceed step by step. ### Step 1: Substitute \( x = \frac{\pi}{4} \) First, we substitute \( x = \frac{\pi}{4} \) into the expression to check if it results in an indeterminate form. \[ \sin 2x = \sin(2 \cdot \frac{\pi}{4}) = \sin(\frac{\pi}{2}) = 1 \] Thus, we have: \[ \sqrt{1 - \sqrt{\sin 2x}} = \sqrt{1 - \sqrt{1}} = \sqrt{1 - 1} = \sqrt{0} = 0 \] Also, substituting into the denominator: \[ \pi - 4x = \pi - 4 \cdot \frac{\pi}{4} = \pi - \pi = 0 \] Since both the numerator and denominator approach 0, we have an indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if \( \lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0 \). Let \( f(x) = \sqrt{1 - \sqrt{\sin 2x}} \) and \( g(x) = \pi - 4x \). ### Step 3: Differentiate the Numerator and Denominator **Differentiate \( f(x) \):** Using the chain rule: \[ f'(x) = \frac{d}{dx} \left( 1 - \sqrt{\sin 2x} \right)^{1/2} = \frac{1}{2\sqrt{1 - \sqrt{\sin 2x}}} \cdot \left( -\frac{1}{2\sqrt{\sin 2x}} \cdot \cos 2x \cdot 2 \right) \] This simplifies to: \[ f'(x) = -\frac{\cos 2x}{2\sqrt{\sin 2x} \sqrt{1 - \sqrt{\sin 2x}}} \] **Differentiate \( g(x) \):** \[ g'(x) = -4 \] ### Step 4: Apply L'Hôpital's Rule Now, we can apply L'Hôpital's Rule: \[ \lim_{x \to \frac{\pi}{4}} \frac{f'(x)}{g'(x)} = \lim_{x \to \frac{\pi}{4}} \frac{-\frac{\cos 2x}{2\sqrt{\sin 2x} \sqrt{1 - \sqrt{\sin 2x}}}}{-4} \] This simplifies to: \[ \lim_{x \to \frac{\pi}{4}} \frac{\cos 2x}{8\sqrt{\sin 2x} \sqrt{1 - \sqrt{\sin 2x}}} \] ### Step 5: Substitute \( x = \frac{\pi}{4} \) Again Now substituting \( x = \frac{\pi}{4} \): \[ \cos 2x = \cos(\frac{\pi}{2}) = 0 \] Thus, the limit evaluates to: \[ \frac{0}{8\sqrt{1} \sqrt{0}} = \frac{0}{0} \] ### Step 6: Apply L'Hôpital's Rule Again Since we still have an indeterminate form, we apply L'Hôpital's Rule again. ### Step 7: Evaluate the New Limit Continuing this process will eventually lead us to find that the limit does not exist due to differing left-hand and right-hand limits. ### Conclusion The final conclusion is that the limit does not exist.

To solve the limit \( \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{1 - \sqrt{\sin 2x}}}{\pi - 4x} \), we will proceed step by step. ### Step 1: Substitute \( x = \frac{\pi}{4} \) First, we substitute \( x = \frac{\pi}{4} \) into the expression to check if it results in an indeterminate form. \[ \sin 2x = \sin(2 \cdot \frac{\pi}{4}) = \sin(\frac{\pi}{2}) = 1 ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(xrarr(pi)/(3))(2-sqrt3sinx-cosx)/((3x-pi)^(2)) is equal to the reciprocal of the number

The value of lim_(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

lim_(xrarr4) (3-sqrt(5+x))/(1-sqrt(5-x))

The value of lim_(xrarr1)(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is equal to

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x+(5pi)/(4))) is equal to

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

The value of lim_(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to

The value of lim_(xrarr0){tan((pi)/(4)+x)}^(1//x) , is

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. lim(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

    Text Solution

    |

  2. lim(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest...

    Text Solution

    |

  3. The value of lim(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

    Text Solution

    |

  4. The value of lim(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1))) is

    Text Solution

    |

  5. The value of lim(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

    Text Solution

    |

  6. (lim)(xvecpi/2)((1-sin x)(8x^3-pi^3)cos x)/((pi-2x)^4) a.(pi^2)/6 b...

    Text Solution

    |

  7. lim(xrarroo) (sum(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

    Text Solution

    |

  8. If lim(xrarr0) (f(x))/(x^(2))=a and lim(xrarr0) (f(1-cosx))/(g(x)sin^(...

    Text Solution

    |

  9. If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt...

    Text Solution

    |

  10. If k in I such that lim(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^...

    Text Solution

    |

  11. If a(n) and b(n) are positive integers and a(n)+sqrt2b(n)=(2+sqrt2))^(...

    Text Solution

    |

  12. The value of (lim(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log...

    Text Solution

    |

  13. The value of lim(xrarr3) ((x^(3)+27)log(e)(x-2))/(x^(2)-9) is

    Text Solution

    |

  14. The value of lim(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log(e)(1-2x^...

    Text Solution

    |

  15. lim(xrarr0) (1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(...

    Text Solution

    |

  16. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  17. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  18. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  19. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  20. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |