Home
Class 12
MATHS
The value of lim(xrarroo) (e^(sqrt(x^(4)...

The value of `lim_(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1)))` is

A

0

B

e

C

1/e

D

`-oo`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( e^{\sqrt{x^4 + 1}} - e^{x^2 + 1} \right) \), we will follow these steps: ### Step 1: Analyze the expression inside the limit We start with the expression: \[ e^{\sqrt{x^4 + 1}} - e^{x^2 + 1} \] As \( x \to \infty \), we need to analyze the behavior of both terms. ### Step 2: Simplify \( \sqrt{x^4 + 1} \) For large \( x \): \[ \sqrt{x^4 + 1} \approx \sqrt{x^4} = x^2 \] Thus, \[ \sqrt{x^4 + 1} = x^2 \sqrt{1 + \frac{1}{x^4}} \approx x^2 \left(1 + \frac{1}{2x^4}\right) = x^2 + \frac{1}{2x^2} \] So, \[ e^{\sqrt{x^4 + 1}} \approx e^{x^2 + \frac{1}{2x^2}} = e^{x^2} e^{\frac{1}{2x^2}} \] ### Step 3: Expand \( e^{\frac{1}{2x^2}} \) Using the Taylor expansion for \( e^u \) where \( u = \frac{1}{2x^2} \): \[ e^{\frac{1}{2x^2}} \approx 1 + \frac{1}{2x^2} + O\left(\frac{1}{x^4}\right) \] Thus, \[ e^{\sqrt{x^4 + 1}} \approx e^{x^2} \left(1 + \frac{1}{2x^2}\right) \approx e^{x^2} + \frac{e^{x^2}}{2x^2} \] ### Step 4: Analyze \( e^{x^2 + 1} \) We can rewrite \( e^{x^2 + 1} \) as: \[ e^{x^2 + 1} = e^{x^2} e \] ### Step 5: Combine the two expressions Now we can substitute back into our limit: \[ e^{\sqrt{x^4 + 1}} - e^{x^2 + 1} \approx \left(e^{x^2} + \frac{e^{x^2}}{2x^2}\right) - e \cdot e^{x^2} \] This simplifies to: \[ e^{x^2} \left(1 + \frac{1}{2x^2} - e\right) \] ### Step 6: Factor out \( e^{x^2} \) Thus, we have: \[ e^{x^2} \left(\frac{1}{2x^2} + 1 - e\right) \] ### Step 7: Evaluate the limit As \( x \to \infty \), \( e^{x^2} \) grows exponentially, and the term \( \left(\frac{1}{2x^2} + 1 - e\right) \) approaches \( 1 - e \). Therefore: \[ \lim_{x \to \infty} \left( e^{\sqrt{x^4 + 1}} - e^{x^2 + 1} \right) = \infty \cdot (1 - e) \] Since \( e > 1 \), \( 1 - e < 0 \), thus: \[ \lim_{x \to \infty} \left( e^{\sqrt{x^4 + 1}} - e^{x^2 + 1} \right) = -\infty \] ### Final Answer: The value of the limit is: \[ \boxed{-\infty} \]

To solve the limit \( \lim_{x \to \infty} \left( e^{\sqrt{x^4 + 1}} - e^{x^2 + 1} \right) \), we will follow these steps: ### Step 1: Analyze the expression inside the limit We start with the expression: \[ e^{\sqrt{x^4 + 1}} - e^{x^2 + 1} \] As \( x \to \infty \), we need to analyze the behavior of both terms. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of (lim)_(x->oo)(e^sqrt(x^(4+1))-e^(x^(2+1))) is (a) 0 b. e c. 1//e d. -oo

The value of lim_(xrarroo) (sinx)/(x) , is

The value of lim_(xrarroo) x^(1//x) equals

lim_(xrarroo) (sqrt(x^2+2x-1)-x)=

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarroo) ((x+3)/(x-1))^(x+1) is

The value of lim_(xrarroo) ((x-1)/(x+1))^(x) , is

The value of lim_(xrarr0) (e^(ax)-e^(bx))/(x) ,is

The value of lim_(xrarroo)((x+6)/(x+1))^(x+4) , is

The value of lim_(xrarroo) ((3x-4)/(3x+2))^(((x+1)/3)) is

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. lim(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest...

    Text Solution

    |

  2. The value of lim(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

    Text Solution

    |

  3. The value of lim(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1))) is

    Text Solution

    |

  4. The value of lim(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

    Text Solution

    |

  5. (lim)(xvecpi/2)((1-sin x)(8x^3-pi^3)cos x)/((pi-2x)^4) a.(pi^2)/6 b...

    Text Solution

    |

  6. lim(xrarroo) (sum(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

    Text Solution

    |

  7. If lim(xrarr0) (f(x))/(x^(2))=a and lim(xrarr0) (f(1-cosx))/(g(x)sin^(...

    Text Solution

    |

  8. If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt...

    Text Solution

    |

  9. If k in I such that lim(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^...

    Text Solution

    |

  10. If a(n) and b(n) are positive integers and a(n)+sqrt2b(n)=(2+sqrt2))^(...

    Text Solution

    |

  11. The value of (lim(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log...

    Text Solution

    |

  12. The value of lim(xrarr3) ((x^(3)+27)log(e)(x-2))/(x^(2)-9) is

    Text Solution

    |

  13. The value of lim(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log(e)(1-2x^...

    Text Solution

    |

  14. lim(xrarr0) (1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(...

    Text Solution

    |

  15. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  16. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  17. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  18. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  19. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  20. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |