Home
Class 12
MATHS
lim(xrarroo) (sum(r=1)^(10)(x+r)^(2010))...

`lim_(xrarroo) (sum_(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=`

A

5

B

2010

C

`(502)/(1005)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \frac{\sum_{r=1}^{10} (x+r)^{2010}}{(x^{1006}+1)(2x^{1004}+1)}, \] we will break it down step by step. ### Step 1: Expand the numerator The numerator is a summation of the form: \[ \sum_{r=1}^{10} (x+r)^{2010}. \] As \(x\) approaches infinity, we can approximate \((x+r)^{2010}\) using the binomial expansion: \[ (x+r)^{2010} = x^{2010} \left(1 + \frac{r}{x}\right)^{2010}. \] Using the binomial theorem, we have: \[ \left(1 + \frac{r}{x}\right)^{2010} \approx 1 + \frac{2010r}{x} + O\left(\frac{1}{x^2}\right) \text{ as } x \to \infty. \] Thus, \[ (x+r)^{2010} \approx x^{2010} \left(1 + \frac{2010r}{x}\right) = x^{2010} + 2010r x^{2009} + O\left(x^{2008}\right). \] Now, summing from \(r=1\) to \(10\): \[ \sum_{r=1}^{10} (x+r)^{2010} \approx \sum_{r=1}^{10} \left(x^{2010} + 2010r x^{2009}\right) = 10x^{2010} + 2010 \sum_{r=1}^{10} r x^{2009}. \] Calculating \(\sum_{r=1}^{10} r = \frac{10(10+1)}{2} = 55\): \[ \sum_{r=1}^{10} (x+r)^{2010} \approx 10x^{2010} + 2010 \cdot 55 x^{2009} = 10x^{2010} + 110550 x^{2009}. \] ### Step 2: Simplify the denominator The denominator is: \[ (x^{1006}+1)(2x^{1004}+1). \] As \(x\) approaches infinity, we can approximate this as: \[ (x^{1006})(2x^{1004}) = 2x^{2010}. \] ### Step 3: Combine the results Now we can substitute the approximations back into the limit: \[ \lim_{x \to \infty} \frac{10x^{2010} + 110550 x^{2009}}{2x^{2010}}. \] ### Step 4: Divide by the highest power of \(x\) We can factor out \(x^{2010}\) from the numerator: \[ = \lim_{x \to \infty} \frac{x^{2010} \left(10 + \frac{110550}{x}\right)}{2x^{2010}}. \] Cancelling \(x^{2010}\): \[ = \lim_{x \to \infty} \frac{10 + \frac{110550}{x}}{2}. \] As \(x \to \infty\), \(\frac{110550}{x} \to 0\): \[ = \frac{10 + 0}{2} = \frac{10}{2} = 5. \] ### Final Answer Thus, the limit is: \[ \boxed{5}. \]

To solve the limit \[ \lim_{x \to \infty} \frac{\sum_{r=1}^{10} (x+r)^{2010}}{(x^{1006}+1)(2x^{1004}+1)}, \] we will break it down step by step. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarroo) (2x)/(1+4x)

lim_(xrarroo) (sinx)/(x)=?

lim_(xrarroo) (cosx)/(x)=?

lim_(xrarroo)((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) is equal to (a) 0 (b) 1 (c) 10 (d) 100

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

lim_(xrarroo) (sqrt(x^2+2x-1)-x)=

lim_(xrarroo) (1^(2)+2^(2)+3^(2)+....+x^(2))/(x^3)

lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1) is equal to

lim_(xrarroo) [x-log_(e)((e^(x)+e^(-x))/(2))]=

The value of lim_(xrarr1)Sigma_(r=1)^(10)=(x^(r )-1^(r ))/(2(x-1)) is equal to

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. The value of lim(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

    Text Solution

    |

  2. (lim)(xvecpi/2)((1-sin x)(8x^3-pi^3)cos x)/((pi-2x)^4) a.(pi^2)/6 b...

    Text Solution

    |

  3. lim(xrarroo) (sum(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

    Text Solution

    |

  4. If lim(xrarr0) (f(x))/(x^(2))=a and lim(xrarr0) (f(1-cosx))/(g(x)sin^(...

    Text Solution

    |

  5. If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt...

    Text Solution

    |

  6. If k in I such that lim(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^...

    Text Solution

    |

  7. If a(n) and b(n) are positive integers and a(n)+sqrt2b(n)=(2+sqrt2))^(...

    Text Solution

    |

  8. The value of (lim(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log...

    Text Solution

    |

  9. The value of lim(xrarr3) ((x^(3)+27)log(e)(x-2))/(x^(2)-9) is

    Text Solution

    |

  10. The value of lim(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log(e)(1-2x^...

    Text Solution

    |

  11. lim(xrarr0) (1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(...

    Text Solution

    |

  12. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  13. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  14. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  15. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  16. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  17. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  18. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  19. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  20. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |