Home
Class 12
MATHS
If lim(xrarr0) (f(x))/(x^(2))=a and lim(...

If `lim_(xrarr0) (f(x))/(x^(2))=a and lim_(xrarr0) (f(1-cosx))/(g(x)sin^(2)x)=b` (where `b ne 0`),
then `lim_(xrarr0) (g(1-cos2x))/(x^(4))` is

A

`(4a)/(b)`

B

`(a)/(4b)`

C

`(a)/(b)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given limits and derive the required limit. ### Given: 1. \(\lim_{x \to 0} \frac{f(x)}{x^2} = a\) 2. \(\lim_{x \to 0} \frac{f(1 - \cos x)}{g(x) \sin^2 x} = b\) (where \(b \neq 0\)) We need to find: \[ \lim_{x \to 0} \frac{g(1 - \cos 2x)}{x^4} \] ### Step 1: Rewrite \(1 - \cos x\) Using the trigonometric identity: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \] We can express \(1 - \cos 2x\) as: \[ 1 - \cos 2x = 2 \sin^2(x) \] ### Step 2: Substitute into the limit Now we can rewrite the limit we want to find: \[ \lim_{x \to 0} \frac{g(1 - \cos 2x)}{x^4} = \lim_{x \to 0} \frac{g(2 \sin^2 x)}{x^4} \] ### Step 3: Use the second limit From the second limit, we have: \[ \lim_{x \to 0} \frac{f(1 - \cos x)}{g(x) \sin^2 x} = b \] Substituting \(1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right)\): \[ \lim_{x \to 0} \frac{f(2 \sin^2\left(\frac{x}{2}\right))}{g(x) \sin^2 x} = b \] ### Step 4: Analyze the limit As \(x \to 0\), we have \(f(2 \sin^2\left(\frac{x}{2}\right))\) behaving like \(f(0)\) since \(\sin^2\left(\frac{x}{2}\right) \to 0\). Thus, we can write: \[ f(2 \sin^2\left(\frac{x}{2}\right)) \sim 2a \sin^2\left(\frac{x}{2}\right) \quad \text{(from the first limit)} \] ### Step 5: Substitute back into the limit Now substituting back: \[ \lim_{x \to 0} \frac{2a \sin^2\left(\frac{x}{2}\right)}{g(x) \sin^2 x} = b \] ### Step 6: Simplify \(\sin^2 x\) Using the small angle approximation: \[ \sin x \sim x \quad \text{and} \quad \sin^2 x \sim x^2 \] Thus: \[ \sin^2\left(\frac{x}{2}\right) \sim \left(\frac{x}{2}\right)^2 = \frac{x^2}{4} \] So: \[ \sin^2 x \sim x^2 \] ### Step 7: Final limit Now we can substitute: \[ \frac{2a \cdot \frac{x^2}{4}}{g(x) \cdot x^2} = b \implies \frac{a}{2g(x)} = b \] Thus: \[ g(x) \sim \frac{a}{2b} \] ### Step 8: Find the required limit Now we can substitute back into our original limit: \[ \lim_{x \to 0} \frac{g(2 \sin^2 x)}{x^4} = \lim_{x \to 0} \frac{g(2 \cdot \frac{x^2}{4})}{x^4} = \lim_{x \to 0} \frac{g\left(\frac{x^2}{2}\right)}{x^4} \] As \(x \to 0\), \(g\left(\frac{x^2}{2}\right) \sim \frac{a}{2b}\): \[ \lim_{x \to 0} \frac{\frac{a}{2b}}{x^4} = \frac{a}{2b} \cdot \frac{1}{x^4} \] ### Conclusion Thus, the final limit is: \[ \lim_{x \to 0} \frac{g(1 - \cos 2x)}{x^4} = \frac{4a}{b} \] ### Final Answer: The limit is \(\frac{4a}{b}\).

To solve the problem step by step, we will analyze the given limits and derive the required limit. ### Given: 1. \(\lim_{x \to 0} \frac{f(x)}{x^2} = a\) 2. \(\lim_{x \to 0} \frac{f(1 - \cos x)}{g(x) \sin^2 x} = b\) (where \(b \neq 0\)) We need to find: \[ ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xrarr0)((1-cosx))/(x^(2))

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr0)((1-cos x)/x^2)

lim_(xrarr0) (sin^(2)4x)/(x^(2))= ?

lim_(xrarr0)(sin(x)/(4))/(x)

lim_(xrarr0) (sin 3 x)/(2x)

lim_(xrarr0)x sec x

lim_(xrarr0) ((x+1)^(5)-1)/(x)

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0) (x^(2)-3x+2)

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. (lim)(xvecpi/2)((1-sin x)(8x^3-pi^3)cos x)/((pi-2x)^4) a.(pi^2)/6 b...

    Text Solution

    |

  2. lim(xrarroo) (sum(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

    Text Solution

    |

  3. If lim(xrarr0) (f(x))/(x^(2))=a and lim(xrarr0) (f(1-cosx))/(g(x)sin^(...

    Text Solution

    |

  4. If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt...

    Text Solution

    |

  5. If k in I such that lim(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^...

    Text Solution

    |

  6. If a(n) and b(n) are positive integers and a(n)+sqrt2b(n)=(2+sqrt2))^(...

    Text Solution

    |

  7. The value of (lim(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log...

    Text Solution

    |

  8. The value of lim(xrarr3) ((x^(3)+27)log(e)(x-2))/(x^(2)-9) is

    Text Solution

    |

  9. The value of lim(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log(e)(1-2x^...

    Text Solution

    |

  10. lim(xrarr0) (1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(...

    Text Solution

    |

  11. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  12. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  13. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  14. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  15. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  16. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  17. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  18. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  19. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  20. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |