Home
Class 12
MATHS
If f(x)={{:((x)/(sinx)",",x gt0),(2-x","...

If `f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt1),(x^(2)-2x-2",",1lexlt2),(x-5",",xge2):}`
Then the value of `lim_(xrarr0) g(f(x))`

A

is `-2`

B

is `-3`

C

is 1

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of the composite function \( g(f(x)) \) as \( x \) approaches 0. Let's break this down step by step. ### Step 1: Determine \( f(0) \) Since we are interested in the limit as \( x \) approaches 0, we first need to evaluate \( f(x) \) at \( x = 0 \) from the left side (i.e., \( x \to 0^- \)). - For \( x \leq 0 \), the function \( f(x) \) is defined as: \[ f(x) = 2 - x \] - Therefore, as \( x \to 0^- \): \[ f(0^-) = 2 - 0 = 2 \] ### Step 2: Evaluate \( g(f(0^-)) \) Next, we need to find \( g(f(0^-)) \), which is \( g(2) \). - For \( x \geq 2 \), the function \( g(x) \) is defined as: \[ g(x) = x - 5 \] - Thus, substituting \( x = 2 \): \[ g(2) = 2 - 5 = -3 \] ### Step 3: Conclusion Now, we can conclude that: \[ \lim_{x \to 0^-} g(f(x)) = g(f(0^-)) = g(2) = -3 \] ### Final Answer The value of \( \lim_{x \to 0} g(f(x)) \) is \( -3 \).

To solve the problem, we need to find the limit of the composite function \( g(f(x)) \) as \( x \) approaches 0. Let's break this down step by step. ### Step 1: Determine \( f(0) \) Since we are interested in the limit as \( x \) approaches 0, we first need to evaluate \( f(x) \) at \( x = 0 \) from the left side (i.e., \( x \to 0^- \)). - For \( x \leq 0 \), the function \( f(x) \) is defined as: \[ f(x) = 2 - x \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(x+1", "xlgt0),(2-x", "xle0):}"and"g(x)={{:(x+3", "xlt1),(x^(2)-2x-2", "1lexlt2),(x-5", "xge2):} Find the LHL and RHL of g(f(x)) at x=0 and, hence, find lim_(xto0) g(f(x)).

lim_(xrarr0) (x^(2)-3x+2)

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

lim_(xrarr0) (x^(2)-x)/(sinx)

Let f and g be real valued functions defined as f(x)={{:(7x^(2)+x-8",",xle 1),(4x+5",",1lt x le 7),(8x+3",",x gt7):} " " g(x)={{:(|x|",",xlt -3),(0",",-3le x lt 2),(x^(2)+4",",xge 2):} The value of gof (0) + fog (-3) is

Let f(x){:{(1+sinx", "xlt0),(x^(2)-x+1ge0):} Then

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

If f(x)={(x^2+2,,,xge2),(1-x ,,,xlt2):} ; g(x)={(2x,,,xgt1),(3-x ,,,xle1):} then the value of lim_(x->1) f(g(x)) is

If f(x)={{:(sinx","" "xnenpi", "ninI),(2","" ""otherwise"):} and g(x)={{:(x^(2)+1","" "xne0", "2),(4","" "x=0),(5","" "x=2):} then find lim_(xto0) g{f(x)} .

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. lim(xrarroo) (sum(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

    Text Solution

    |

  2. If lim(xrarr0) (f(x))/(x^(2))=a and lim(xrarr0) (f(1-cosx))/(g(x)sin^(...

    Text Solution

    |

  3. If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt...

    Text Solution

    |

  4. If k in I such that lim(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^...

    Text Solution

    |

  5. If a(n) and b(n) are positive integers and a(n)+sqrt2b(n)=(2+sqrt2))^(...

    Text Solution

    |

  6. The value of (lim(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log...

    Text Solution

    |

  7. The value of lim(xrarr3) ((x^(3)+27)log(e)(x-2))/(x^(2)-9) is

    Text Solution

    |

  8. The value of lim(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log(e)(1-2x^...

    Text Solution

    |

  9. lim(xrarr0) (1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(...

    Text Solution

    |

  10. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  11. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  12. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  13. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  14. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  15. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  16. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  17. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  18. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  19. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  20. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |