Home
Class 12
MATHS
If a(n) and b(n) are positive integers a...

If `a_(n)` and `b_(n)` are positive integers and `a_(n)+sqrt2b_(n)=(2+sqrt2))^(n)`, then `lim_(nrarroo) ((a_(n))/(b_(n)))`=

A

`sqrt2`

B

2

C

`e^(sqrt2)`

D

`e^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ a_n + \sqrt{2} b_n = (2 + \sqrt{2})^n \] We need to find the limit: \[ \lim_{n \to \infty} \frac{a_n}{b_n} \] ### Step 1: Express \( a_n \) and \( b_n \) We can express \( a_n \) and \( b_n \) in terms of \( (2 + \sqrt{2})^n \) and \( (2 - \sqrt{2})^n \). Using the binomial theorem, we can expand \( (2 + \sqrt{2})^n \) and \( (2 - \sqrt{2})^n \): \[ (2 + \sqrt{2})^n + (2 - \sqrt{2})^n = 2 \cdot 2^n \quad \text{(since \( (2 - \sqrt{2})^n \) approaches 0 as \( n \to \infty \))} \] Thus, we can write: \[ a_n = \frac{(2 + \sqrt{2})^n + (2 - \sqrt{2})^n}{2} \] \[ b_n = \frac{(2 + \sqrt{2})^n - (2 - \sqrt{2})^n}{2\sqrt{2}} \] ### Step 2: Simplify \( \frac{a_n}{b_n} \) Now, we can find \( \frac{a_n}{b_n} \): \[ \frac{a_n}{b_n} = \frac{\frac{(2 + \sqrt{2})^n + (2 - \sqrt{2})^n}{2}}{\frac{(2 + \sqrt{2})^n - (2 - \sqrt{2})^n}{2\sqrt{2}}} \] This simplifies to: \[ \frac{a_n}{b_n} = \sqrt{2} \cdot \frac{(2 + \sqrt{2})^n + (2 - \sqrt{2})^n}{(2 + \sqrt{2})^n - (2 - \sqrt{2})^n} \] ### Step 3: Analyze the limit as \( n \to \infty \) As \( n \to \infty \), the term \( (2 - \sqrt{2})^n \) approaches 0 because \( 2 - \sqrt{2} < 1 \). Therefore, we can approximate: \[ \frac{a_n}{b_n} \approx \sqrt{2} \cdot \frac{(2 + \sqrt{2})^n}{(2 + \sqrt{2})^n} = \sqrt{2} \] ### Step 4: Find the limit Thus, we find that: \[ \lim_{n \to \infty} \frac{a_n}{b_n} = \sqrt{2} \] ### Conclusion The final answer is: \[ \lim_{n \to \infty} \frac{a_n}{b_n} = \sqrt{2} \]

To solve the problem, we start with the given equation: \[ a_n + \sqrt{2} b_n = (2 + \sqrt{2})^n \] We need to find the limit: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If a_n and b_n are positive integers and a_n+sqrt(2)b_n=(2+sqrt(2))^n ,t h e n(lim)_(n->oo)((a_n)/(b_n))= a. 2 b. sqrt(2) c. e^(sqrt(2)) d. e^2

If a_(1) is the greatest value of f(x) , where f(x) =((1)/(2+[sinx])) (where [.] denotes greatest integer function) and a_(n-1)=((-1)^(n-2))/((n+1))+a_(n) (where n in N), then lim_(nrarroo) (a_(n)) is

Let a_(1),a_(2),a_(n) be sequence of real numbers with a_(n+1)=a_(n)+sqrt(1+a_(n)^(2)) and a_(0)=0 . Prove that lim_(xtooo)((a_(n))/(2^(n-1)))=2/(pi)

If lta_(n)gtandltb_(n)gt be two sequences given by a_(n)=(x)^((1)/(2^(n)))+(y)^((1)/(2^(n))) and b_(n)=(x)^((1)/(2^(n))) -(y)^((1)/(2^n)) for all ninN . Then, a_(1)a_(2)a_(3) . . . . .a_(n) is equal to

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

Let n be positive integer such that, (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then a_(r) is :

The nth term of a series is given by t_(n)=(n^(5)+n^(3))/(n^(4)+n^(2)+1) and if sum of its n terms can be expressed as S_(n)=a_(n)^(2)+a+(1)/(b_(n)^(2)+b) where a_(n) and b_(n) are the nth terms of some arithmetic progressions and a, b are some constants, prove that (b_(n))/(a_(n)) is a costant.

If A_(1), A_(2),..,A_(n) are any n events, then

If a_(1)=5 and a_(n)=1+sqrt(a_(n-1)), find a_(3) .

Let alpha and beta are roots of equation x^(2)-x-1=0 with alpha > beta . For all positive integers n defines a_(n)=(alpha^(n)-beta^(n))/(alpha-beta) , n>1 and b=1 and b_(n)=a_(n+1)+a_(n-1) then

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt...

    Text Solution

    |

  2. If k in I such that lim(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^...

    Text Solution

    |

  3. If a(n) and b(n) are positive integers and a(n)+sqrt2b(n)=(2+sqrt2))^(...

    Text Solution

    |

  4. The value of (lim(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log...

    Text Solution

    |

  5. The value of lim(xrarr3) ((x^(3)+27)log(e)(x-2))/(x^(2)-9) is

    Text Solution

    |

  6. The value of lim(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log(e)(1-2x^...

    Text Solution

    |

  7. lim(xrarr0) (1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(...

    Text Solution

    |

  8. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  9. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  10. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  11. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  12. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  13. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  14. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  15. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  16. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  17. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  18. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |

  19. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  20. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |