Home
Class 12
MATHS
The value of lim(xrarr3) ((x^(3)+27)log(...

The value of `lim_(xrarr3) ((x^(3)+27)log_(e)(x-2))/(x^(2)-9)` is

A

9

B

18

C

27

D

`5//3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to 3} \frac{(x^3 + 27) \log_e(x - 2)}{x^2 - 9} \] we will follow these steps: ### Step 1: Substitute the limit value First, we substitute \(x = 3\) directly into the expression: \[ \frac{(3^3 + 27) \log_e(3 - 2)}{3^2 - 9} \] Calculating the numerator and denominator: - Numerator: \(3^3 + 27 = 27 + 27 = 54\) and \(\log_e(3 - 2) = \log_e(1) = 0\) - Denominator: \(3^2 - 9 = 9 - 9 = 0\) This gives us an indeterminate form \(\frac{54 \cdot 0}{0}\). ### Step 2: Factor the expression Since we have an indeterminate form, we need to simplify the expression. The denominator can be factored as: \[ x^2 - 9 = (x - 3)(x + 3) \] For the numerator, we can rewrite \(x^3 + 27\) using the sum of cubes: \[ x^3 + 27 = (x + 3)(x^2 - 3x + 9) \] Thus, our limit becomes: \[ \lim_{x \to 3} \frac{(x + 3)(x^2 - 3x + 9) \log_e(x - 2)}{(x - 3)(x + 3)} \] ### Step 3: Cancel common factors We can cancel \((x + 3)\) from the numerator and denominator: \[ \lim_{x \to 3} \frac{(x^2 - 3x + 9) \log_e(x - 2)}{(x - 3)} \] ### Step 4: Substitute \(x = 3\) again Now we substitute \(x = 3\) again: - The numerator becomes \(3^2 - 3 \cdot 3 + 9 = 9 - 9 + 9 = 9\) - The denominator becomes \(3 - 3 = 0\) This still gives us an indeterminate form \(\frac{9 \cdot 0}{0}\). ### Step 5: Apply L'Hôpital's Rule Since we still have an indeterminate form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and denominator: 1. Derivative of the numerator: \[ \frac{d}{dx}[(x^2 - 3x + 9) \log_e(x - 2)] = (2x - 3) \log_e(x - 2) + (x^2 - 3x + 9) \cdot \frac{1}{x - 2} \] 2. Derivative of the denominator: \[ \frac{d}{dx}(x - 3) = 1 \] ### Step 6: Evaluate the limit again Now we evaluate the limit again: \[ \lim_{x \to 3} \left[(2x - 3) \log_e(x - 2) + \frac{x^2 - 3x + 9}{x - 2}\right] \] Substituting \(x = 3\): - The first term: \((2(3) - 3) \log_e(3 - 2) = 3 \cdot 0 = 0\) - The second term: \(\frac{3^2 - 3 \cdot 3 + 9}{3 - 2} = \frac{9 - 9 + 9}{1} = 9\) Thus, the limit evaluates to: \[ \lim_{x \to 3} \frac{(x^2 - 3x + 9) \log_e(x - 2)}{(x - 3)} = 9 \] ### Final Answer Therefore, the value of the limit is: \[ \boxed{9} \]

To find the limit \[ \lim_{x \to 3} \frac{(x^3 + 27) \log_e(x - 2)}{x^2 - 9} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of (lim)_(xvec3)((x^3+27)(log)_e(x-2))/(x^2-9) is a. 9 b. 18 c. 27 d. 1/3

lim_(xrarr0) (x^(2)-3x+2)

lim_(xrarr3) (x^(3)-27)/(2x^(2)-5x-3)

lim_(xrarr4) (4x+3)/(x-2)

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

lim_(xrarr4)(2x+3)/(x-2)

The value of lim_(xrarre) (logx-1)/(x-e) , is

lim_(xrarr0)(x^3 log x)

The value of lim_(xrarr0) (e^(ax)-e^(bx))/(x) ,is

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. If a(n) and b(n) are positive integers and a(n)+sqrt2b(n)=(2+sqrt2))^(...

    Text Solution

    |

  2. The value of (lim(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log...

    Text Solution

    |

  3. The value of lim(xrarr3) ((x^(3)+27)log(e)(x-2))/(x^(2)-9) is

    Text Solution

    |

  4. The value of lim(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log(e)(1-2x^...

    Text Solution

    |

  5. lim(xrarr0) (1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(...

    Text Solution

    |

  6. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  7. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  8. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  9. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  10. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  11. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  12. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  13. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  14. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  15. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  16. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |

  17. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  18. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  19. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  20. The value of underset(xrarr1)(lim)(root(13)x-root7x)/(root5x-root3x) i...

    Text Solution

    |