Home
Class 12
MATHS
The value of lim(xrarr0^(+))((1-cos(sin^...

The value of `lim_(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log_(e)(1-2x^(2)))/(sin^(2)x))` is

A

0

B

e

C

`-1`

D

`oo`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we will follow a systematic approach to evaluate the limit step by step. **Given:** \[ L = \lim_{x \to 0^+} \left( \frac{1 - \cos(\sin^2 x)}{x^2} \right)^{\frac{\log_e(1 - 2x^2)}{\sin^2 x}} \] ### Step 1: Substitute \( x = h \) where \( h \to 0^+ \) We rewrite the limit as: \[ L = \lim_{h \to 0^+} \left( \frac{1 - \cos(\sin^2 h)}{h^2} \right)^{\frac{\log_e(1 - 2h^2)}{\sin^2 h}} \] ### Step 2: Analyze the numerator \( 1 - \cos(\sin^2 h) \) Using the trigonometric identity \( 1 - \cos \theta = 2 \sin^2\left(\frac{\theta}{2}\right) \): \[ 1 - \cos(\sin^2 h) = 2 \sin^2\left(\frac{\sin^2 h}{2}\right) \] ### Step 3: Simplify \( \sin^2\left(\frac{\sin^2 h}{2}\right) \) As \( h \to 0 \), \( \sin h \approx h \): \[ \sin^2 h \approx h^2 \implies \frac{\sin^2 h}{2} \approx \frac{h^2}{2} \] Thus, \[ \sin^2\left(\frac{\sin^2 h}{2}\right) \approx \sin^2\left(\frac{h^2}{2}\right) \approx \left(\frac{h^2}{2}\right)^2 = \frac{h^4}{4} \] ### Step 4: Substitute back into the limit Now we have: \[ 1 - \cos(\sin^2 h) \approx 2 \cdot \frac{h^4}{4} = \frac{h^4}{2} \] So, \[ \frac{1 - \cos(\sin^2 h)}{h^2} \approx \frac{\frac{h^4}{2}}{h^2} = \frac{h^2}{2} \] ### Step 5: Evaluate the logarithmic part Next, we need to evaluate: \[ \log_e(1 - 2h^2) \approx -2h^2 \quad \text{(as \( h \to 0 \))} \] Thus, \[ \frac{\log_e(1 - 2h^2)}{\sin^2 h} \approx \frac{-2h^2}{h^2} = -2 \] ### Step 6: Combine results Now substituting back into the limit: \[ L = \lim_{h \to 0^+} \left( \frac{h^2}{2} \right)^{-2} \] This simplifies to: \[ L = \lim_{h \to 0^+} \left( \frac{2}{h^2} \right)^{2} = \lim_{h \to 0^+} \frac{4}{h^4} \] ### Step 7: Evaluate the limit As \( h \to 0^+ \): \[ \frac{4}{h^4} \to \infty \] ### Conclusion Thus, the final answer is: \[ L = \infty \]

To solve the limit problem, we will follow a systematic approach to evaluate the limit step by step. **Given:** \[ L = \lim_{x \to 0^+} \left( \frac{1 - \cos(\sin^2 x)}{x^2} \right)^{\frac{\log_e(1 - 2x^2)}{\sin^2 x}} \] ### Step 1: Substitute \( x = h \) where \( h \to 0^+ \) ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

lim_( xrarr0) (1-cosx)/(x^(2))

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

lim_(xrarr0)((1-cos x)/x^2)

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

lim_(xrarr0) (sin(picos^2x))/(x^2) equals

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. The value of (lim(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log...

    Text Solution

    |

  2. The value of lim(xrarr3) ((x^(3)+27)log(e)(x-2))/(x^(2)-9) is

    Text Solution

    |

  3. The value of lim(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log(e)(1-2x^...

    Text Solution

    |

  4. lim(xrarr0) (1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(...

    Text Solution

    |

  5. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  6. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  7. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  8. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  9. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  10. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  11. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  12. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  13. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  14. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  15. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |

  16. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  17. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  18. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  19. The value of underset(xrarr1)(lim)(root(13)x-root7x)/(root5x-root3x) i...

    Text Solution

    |

  20. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |