Home
Class 12
MATHS
Let f(x) be defined for all x in R such ...

Let f(x) be defined for all `x in R` such that `lim_(xrarr0) [f(x)+log(1-(1)/(e^(f(x))))-log(f(x))]=0`. Then f(0) is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the limit given in the question: \[ \lim_{x \to 0} \left[ f(x) + \log\left(1 - \frac{1}{e^{f(x)}}\right) - \log(f(x)) \right] = 0 \] ### Step 1: Rewrite the limit expression We can rewrite the logarithmic terms using the property of logarithms: \[ \log\left(1 - \frac{1}{e^{f(x)}}\right) - \log(f(x)) = \log\left(\frac{1 - \frac{1}{e^{f(x)}}}{f(x)}\right) \] Thus, the limit can be expressed as: \[ \lim_{x \to 0} \left[ f(x) + \log\left(\frac{1 - \frac{1}{e^{f(x)}}}{f(x)}\right) \right] = 0 \] ### Step 2: Analyze the limit as \( x \to 0 \) As \( x \to 0 \), we need to consider the behavior of \( f(x) \). Let's denote \( f(0) = L \). The limit becomes: \[ \lim_{x \to 0} \left[ f(x) + \log\left(\frac{1 - \frac{1}{e^{f(x)}}}{f(x)}\right) \right] = 0 \] ### Step 3: Substitute \( f(0) \) into the limit If we assume that \( f(0) = L \), we can substitute \( f(x) \) with \( L \) in the limit: \[ L + \log\left(\frac{1 - \frac{1}{e^{L}}}{L}\right) = 0 \] ### Step 4: Solve for \( L \) Rearranging gives us: \[ \log\left(\frac{1 - \frac{1}{e^{L}}}{L}\right) = -L \] Exponentiating both sides gives: \[ \frac{1 - \frac{1}{e^{L}}}{L} = e^{-L} \] This can be rewritten as: \[ 1 - \frac{1}{e^{L}} = L e^{-L} \] ### Step 5: Analyze the equation Rearranging gives us: \[ 1 = L e^{-L} + \frac{1}{e^{L}} \] ### Step 6: Consider the case \( L = 0 \) If we assume \( L = 0 \): \[ 1 = 0 \cdot e^{0} + \frac{1}{e^{0}} = 1 \] This holds true, suggesting that \( f(0) = 0 \) is a valid solution. ### Conclusion Thus, we conclude that: \[ f(0) = 0 \]

To solve the problem, we need to analyze the limit given in the question: \[ \lim_{x \to 0} \left[ f(x) + \log\left(1 - \frac{1}{e^{f(x)}}\right) - \log(f(x)) \right] = 0 \] ### Step 1: Rewrite the limit expression We can rewrite the logarithmic terms using the property of logarithms: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)[1/x - log(1-x)/x^2] =

lim_(xrarr0)[1/x - log(1-x)/x^2] =

Evaluate lim_(xrarr0) f(x) , where

lim_(xrarr0)(log(1+x)/x) a) 1 b) e a) -1 b) -e

Let p(x) be a function defined on R such that lim_(xrarr infty) f (3x)/(f(x))=1,p'(x)=p'(1-x),"for all" x in [0,1],p(0)=1 and p(1)=41."Then" , int_(0)^(1)p(x) dx equals

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

The value of lim_(xrarr0) (log_e(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to

Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfies f(x/y)=f(x)-f(y) for all x,y and f(e)=1. Then (a) f(x) is unbounded (b) f(1/x)vec 0 as x vec0 (c) f(x) is bounded (d) f(x)=(log)_e x

Let f(X) be a polynomila of degree four having extreme values at x =1 and x=2.If lim_(xrarr0) [1+(f(x))/(x^(2))]=3 then f(2) is equal to

If f(x)=log|x|,xne0 then f'(x) equals

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. lim(xrarr0) (1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(...

    Text Solution

    |

  2. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  3. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  4. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  5. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  6. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  7. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  8. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  9. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  10. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  11. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  12. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |

  13. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  14. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  15. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  16. The value of underset(xrarr1)(lim)(root(13)x-root7x)/(root5x-root3x) i...

    Text Solution

    |

  17. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  18. If f^(prime)(a)=1/4, t h e n(lim)(hvec0)(f(a+2h^2)-f(a-2h^2))/(f(a+h^3...

    Text Solution

    |

  19. (lim)(xvec0^+)1/(xsqrt(x))("a t a n"^(-1)(sqrt(x))/a-btan^(-1)(sqrt(x)...

    Text Solution

    |

  20. The value of lim(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2...

    Text Solution

    |