Home
Class 12
MATHS
lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)...

`lim_(xrarroo) x^(2)sin(log_(e)sqrt(cos(pi)/(x)))`

A

0

B

`-(pi^(2))/(2)`

C

`-(pi^(2))/(4)`

D

`-(pi^(2))/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} x^2 \sin\left(\log_e\sqrt{\cos\left(\frac{\pi}{x}\right)}\right) \), we will follow these steps: ### Step 1: Analyze the limit First, we substitute \( x \to \infty \) into the expression: \[ \cos\left(\frac{\pi}{x}\right) \to \cos(0) = 1 \] Thus, \[ \sqrt{\cos\left(\frac{\pi}{x}\right)} \to \sqrt{1} = 1 \] and \[ \log_e(1) = 0. \] This gives us the form \( x^2 \sin(0) = 0 \cdot \infty \), which is indeterminate. ### Step 2: Rewrite the limit To resolve the indeterminate form, we can rewrite the limit: \[ L = \lim_{x \to \infty} x^2 \sin\left(\log_e\sqrt{\cos\left(\frac{\pi}{x}\right)}\right). \] We know that \( \sin(h) \approx h \) when \( h \) is close to 0. Therefore, we can express: \[ \sin\left(\log_e\sqrt{\cos\left(\frac{\pi}{x}\right)}\right) \approx \log_e\sqrt{\cos\left(\frac{\pi}{x}\right)}. \] ### Step 3: Simplify the logarithmic term Now we simplify \( \log_e\sqrt{\cos\left(\frac{\pi}{x}\right)} \): \[ \log_e\sqrt{\cos\left(\frac{\pi}{x}\right)} = \frac{1}{2} \log_e\left(\cos\left(\frac{\pi}{x}\right)\right). \] Thus, \[ L = \lim_{x \to \infty} x^2 \cdot \frac{1}{2} \log_e\left(\cos\left(\frac{\pi}{x}\right)\right). \] ### Step 4: Use Taylor expansion for cosine Using the Taylor series expansion for \( \cos\left(\frac{\pi}{x}\right) \) around 0: \[ \cos\left(\frac{\pi}{x}\right) \approx 1 - \frac{1}{2}\left(\frac{\pi}{x}\right)^2. \] Then, \[ \log_e\left(\cos\left(\frac{\pi}{x}\right)\right) \approx \log_e\left(1 - \frac{1}{2}\left(\frac{\pi}{x}\right)^2\right) \approx -\frac{1}{2}\left(\frac{\pi}{x}\right)^2. \] ### Step 5: Substitute back into the limit Substituting this back into the limit gives: \[ L = \lim_{x \to \infty} x^2 \cdot \frac{1}{2} \left(-\frac{1}{2}\left(\frac{\pi}{x}\right)^2\right) = \lim_{x \to \infty} -\frac{\pi^2}{4}. \] ### Step 6: Evaluate the limit Since the limit does not depend on \( x \) anymore, we find: \[ L = -\frac{\pi^2}{4}. \] ### Final Answer Thus, the final answer is: \[ \boxed{-\frac{\pi^2}{4}}. \]

To solve the limit \( \lim_{x \to \infty} x^2 \sin\left(\log_e\sqrt{\cos\left(\frac{\pi}{x}\right)}\right) \), we will follow these steps: ### Step 1: Analyze the limit First, we substitute \( x \to \infty \) into the expression: \[ \cos\left(\frac{\pi}{x}\right) \to \cos(0) = 1 \] Thus, ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo) x^(2)sin(log_(e)sqrt(cos((pi)/(x)))) is less then

lim_(xrarroo) (sinx)/(x)=?

lim_(xrarroo) (2x)/(1+4x)

The value of lim_(xrarroo) x^(2)(1-cos.(1)/(x)) is

lim_(xrarroo) (cosx)/(x)=?

Find the value of lim_(xto0) (sinx+log_(e)(sqrt(1+sin^(2)x)-sinx))/(sin^(3)x).

lim_(xrarroo) [x-log_(e)((e^(x)+e^(-x))/(2))]=

The value of lim_(xrarroo) {(x^2sin((1)/(x))-x)/(1-|x|)} , is

lim_(xrarroo) (sqrt(x^2+2x-1)-x)=

The value of lim_(x to oo ) (log_(e)(log_(e)x))/(e^(sqrt(x))) is _________. (a) π/ 2 (b)0 (c)-π (d)π

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  2. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  3. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  4. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  5. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  6. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  7. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  8. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  9. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  10. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  11. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |

  12. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  13. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  14. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  15. The value of underset(xrarr1)(lim)(root(13)x-root7x)/(root5x-root3x) i...

    Text Solution

    |

  16. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  17. If f^(prime)(a)=1/4, t h e n(lim)(hvec0)(f(a+2h^2)-f(a-2h^2))/(f(a+h^3...

    Text Solution

    |

  18. (lim)(xvec0^+)1/(xsqrt(x))("a t a n"^(-1)(sqrt(x))/a-btan^(-1)(sqrt(x)...

    Text Solution

    |

  19. The value of lim(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2...

    Text Solution

    |

  20. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |