Home
Class 12
MATHS
If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then...

If `lim_(xrarroo) ((x+c)/(x-c))^(x)=4` then the value of `e^(c)` is

A

`1//4`

B

`1//2`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by the expression \( \lim_{x \to \infty} \left( \frac{x+c}{x-c} \right)^x = 4 \), we will follow these steps: ### Step 1: Rewrite the Limit Expression We start by rewriting the limit expression: \[ L = \lim_{x \to \infty} \left( \frac{x+c}{x-c} \right)^x \] ### Step 2: Factor Out \( x \) Next, we factor \( x \) out of the numerator and denominator: \[ L = \lim_{x \to \infty} \left( \frac{x(1+\frac{c}{x})}{x(1-\frac{c}{x})} \right)^x = \lim_{x \to \infty} \left( \frac{1+\frac{c}{x}}{1-\frac{c}{x}} \right)^x \] ### Step 3: Identify the Indeterminate Form As \( x \to \infty \), both \( \frac{c}{x} \) terms approach 0, leading to the form \( \frac{1+0}{1-0} = 1 \). Thus, we have: \[ L = \lim_{x \to \infty} \left( 1 \right)^x \] This is an indeterminate form \( 1^\infty \). ### Step 4: Apply the Exponential Limit Formula To resolve the indeterminate form, we use the formula: \[ \lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} (f(x)-1)g(x)} \] Here, let \( f(x) = \frac{1+\frac{c}{x}}{1-\frac{c}{x}} \) and \( g(x) = x \). ### Step 5: Simplify \( f(x) - 1 \) We calculate \( f(x) - 1 \): \[ f(x) - 1 = \frac{1+\frac{c}{x}}{1-\frac{c}{x}} - 1 = \frac{(1+\frac{c}{x}) - (1-\frac{c}{x})}{1-\frac{c}{x}} = \frac{\frac{2c}{x}}{1-\frac{c}{x}} = \frac{2c}{x(1-\frac{c}{x})} \] ### Step 6: Multiply by \( g(x) \) Now, we multiply by \( g(x) = x \): \[ \lim_{x \to \infty} (f(x) - 1)g(x) = \lim_{x \to \infty} \frac{2c}{1-\frac{c}{x}} = 2c \] ### Step 7: Substitute Back into the Exponential Limit Thus, we have: \[ L = e^{\lim_{x \to \infty} (f(x) - 1)g(x)} = e^{2c} \] Given that \( L = 4 \), we set: \[ e^{2c} = 4 \] ### Step 8: Solve for \( c \) Taking the natural logarithm of both sides: \[ 2c = \ln(4) \] \[ c = \frac{1}{2} \ln(4) \] ### Step 9: Find \( e^c \) To find \( e^c \): \[ e^c = e^{\frac{1}{2} \ln(4)} = \sqrt{4} = 2 \] ### Final Answer Thus, the value of \( e^c \) is: \[ \boxed{2} \]

To solve the limit problem given by the expression \( \lim_{x \to \infty} \left( \frac{x+c}{x-c} \right)^x = 4 \), we will follow these steps: ### Step 1: Rewrite the Limit Expression We start by rewriting the limit expression: \[ L = \lim_{x \to \infty} \left( \frac{x+c}{x-c} \right)^x \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarroo) (sinx)/(x)=?

lim_(xrarroo) (cosx)/(x)=?

lim_(xrarroo) (2x)/(1+4x)

lim_(xrarroo) (sqrt(x^2+2x-1)-x)=

lim_(xrarroo) ((x+2)/(x+1))^(x+3) is equal to

If C satisfies the equation lim_(xto oo)((x+c)/(x-c))^(x)=4 then |(e^(c))/2| is ………

If: ("lim")_(xrarr1)(1+a x+b x^2)^(c/((x-1)))=e^3, then the value of b c is___

The value of lim_(xrarroo) ((x+3)/(x-1))^(x+1) is

The value of lim_(xrarroo) ((x-1)/(x+1))^(x) , is

If (lim)_(xvec0)[cot(pi/4+x)]^(1//x)=A e^2 then the value of A is: e^2 (B) e^(-4) (C) e (D) e^3

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. Let f(x) be defined for all x in R such that lim(xrarr0) [f(x)+log(1-(...

    Text Solution

    |

  2. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  3. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  4. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  5. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  6. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  7. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  8. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  9. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  10. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |

  11. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  12. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  13. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  14. The value of underset(xrarr1)(lim)(root(13)x-root7x)/(root5x-root3x) i...

    Text Solution

    |

  15. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  16. If f^(prime)(a)=1/4, t h e n(lim)(hvec0)(f(a+2h^2)-f(a-2h^2))/(f(a+h^3...

    Text Solution

    |

  17. (lim)(xvec0^+)1/(xsqrt(x))("a t a n"^(-1)(sqrt(x))/a-btan^(-1)(sqrt(x)...

    Text Solution

    |

  18. The value of lim(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2...

    Text Solution

    |

  19. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |

  20. The value of lim(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

    Text Solution

    |