Home
Class 12
MATHS
If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e...

If `lim_(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim_(xrarr0) [1+(f(x))/(x)]^(1//x)=`

A

e

B

`e^(2)`

C

`e^(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given limit: **Given:** \[ \lim_{x \to 0} \left[1 + x + \frac{f(x)}{x}\right]^{\frac{1}{x}} = e^3 \] We need to find: \[ \lim_{x \to 0} \left[1 + \frac{f(x)}{x}\right]^{\frac{1}{x}} \] ### Step 1: Analyze the Given Limit We know that the limit can be expressed in the form \( e^{\lim_{x \to 0} g(x)} \) where \( g(x) \) is some function we need to determine. From the given limit, we can rewrite it as: \[ \lim_{x \to 0} \left[1 + x + \frac{f(x)}{x}\right]^{\frac{1}{x}} = e^{\lim_{x \to 0} \left( \left(1 + x + \frac{f(x)}{x}\right) - 1 \right) \cdot \frac{1}{x}} \] ### Step 2: Simplify the Expression Inside the Limit Now, we simplify: \[ 1 + x + \frac{f(x)}{x} - 1 = x + \frac{f(x)}{x} \] Thus, we have: \[ \lim_{x \to 0} \left( x + \frac{f(x)}{x} \right) \cdot \frac{1}{x} = \lim_{x \to 0} \left( 1 + \frac{f(x)}{x^2} \right) \] ### Step 3: Set Up the Limit Equation From the original limit, we know: \[ \lim_{x \to 0} \left( 1 + \frac{f(x)}{x^2} \right) = 3 \] This implies: \[ \lim_{x \to 0} \frac{f(x)}{x^2} = 2 \] ### Step 4: Find the Desired Limit Now, we need to find: \[ \lim_{x \to 0} \left[1 + \frac{f(x)}{x}\right]^{\frac{1}{x}} \] We can express this limit similarly: \[ \lim_{x \to 0} \left[1 + \frac{f(x)}{x}\right]^{\frac{1}{x}} = e^{\lim_{x \to 0} \left( \frac{f(x)}{x} - 1 \right) \cdot \frac{1}{x}} \] ### Step 5: Substitute the Known Limit We know from earlier that: \[ \lim_{x \to 0} \frac{f(x)}{x^2} = 2 \implies \lim_{x \to 0} f(x) = 2x^2 \] Thus: \[ \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{2x^2}{x} = \lim_{x \to 0} 2x = 0 \] ### Step 6: Final Calculation Now we can substitute this back into our limit: \[ \lim_{x \to 0} \left[1 + \frac{f(x)}{x}\right]^{\frac{1}{x}} = e^{\lim_{x \to 0} \left( 0 - 1 \right) \cdot \frac{1}{x}} = e^{-\infty} = 0 \] ### Conclusion Thus, the final answer is: \[ \lim_{x \to 0} \left[1 + \frac{f(x)}{x}\right]^{\frac{1}{x}} = 0 \]

To solve the problem step by step, we start with the given limit: **Given:** \[ \lim_{x \to 0} \left[1 + x + \frac{f(x)}{x}\right]^{\frac{1}{x}} = e^3 \] We need to find: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)x sec x

lim_(xrarr0)(sin(x)/(4))/(x)

lim_(xrarr0) ((x+1)^(5)-1)/(x)

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0) (3sqrt(1+x-1))/(x)

lim_(xrarr0)((1-cos x)/x^2)

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr0)(x^3 log x)

lim_(xrarr0) (sqrt(1+x)-1)/(x)=?

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. lim(xrarroo) x^(2)sin(log(e)sqrt(cos(pi)/(x)))

    Text Solution

    |

  2. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  3. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  4. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  5. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  6. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  7. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  8. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  9. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |

  10. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  11. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  12. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  13. The value of underset(xrarr1)(lim)(root(13)x-root7x)/(root5x-root3x) i...

    Text Solution

    |

  14. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  15. If f^(prime)(a)=1/4, t h e n(lim)(hvec0)(f(a+2h^2)-f(a-2h^2))/(f(a+h^3...

    Text Solution

    |

  16. (lim)(xvec0^+)1/(xsqrt(x))("a t a n"^(-1)(sqrt(x))/a-btan^(-1)(sqrt(x)...

    Text Solution

    |

  17. The value of lim(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2...

    Text Solution

    |

  18. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |

  19. The value of lim(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

    Text Solution

    |

  20. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |