Home
Class 12
MATHS
lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]...

`lim_(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=`

A

Does not exist

B

`1`

C

`e`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \frac{\pi}{2}} \left[1 + (\cos x)^{\cos x}\right]^2 \), we will follow these steps: ### Step 1: Simplify the Expression We start with the limit: \[ L = \lim_{x \to \frac{\pi}{2}} \left[1 + (\cos x)^{\cos x}\right]^2 \] We need to focus on the term \( (\cos x)^{\cos x} \) as \( x \) approaches \( \frac{\pi}{2} \). ### Step 2: Analyze \( (\cos x)^{\cos x} \) As \( x \to \frac{\pi}{2} \), \( \cos x \to 0 \). Therefore, we need to evaluate the limit of \( (\cos x)^{\cos x} \): \[ (\cos x)^{\cos x} = e^{\cos x \cdot \log(\cos x)} \] We will find the limit of \( \cos x \cdot \log(\cos x) \) as \( x \to \frac{\pi}{2} \). ### Step 3: Find the Limit of \( \cos x \cdot \log(\cos x) \) We can rewrite: \[ \lim_{x \to \frac{\pi}{2}} \cos x \cdot \log(\cos x) \] As \( x \to \frac{\pi}{2} \), \( \cos x \to 0 \) and \( \log(\cos x) \to -\infty \). This gives us an indeterminate form of \( 0 \cdot (-\infty) \). ### Step 4: Change the Form to Apply L'Hôpital's Rule We can rewrite the expression: \[ \lim_{x \to \frac{\pi}{2}} \cos x \cdot \log(\cos x) = \lim_{x \to \frac{\pi}{2}} \frac{\log(\cos x)}{\frac{1}{\cos x}} \] This is now in the form \( \frac{-\infty}{\infty} \), which allows us to apply L'Hôpital's Rule. ### Step 5: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - The derivative of \( \log(\cos x) \) is \( -\tan x \). - The derivative of \( \frac{1}{\cos x} \) is \( \sec x \tan x \). Thus, we have: \[ \lim_{x \to \frac{\pi}{2}} \frac{-\tan x}{\sec x \tan x} = \lim_{x \to \frac{\pi}{2}} -\frac{1}{\sec x} = \lim_{x \to \frac{\pi}{2}} -\cos x \] As \( x \to \frac{\pi}{2} \), \( -\cos x \to 0 \). ### Step 6: Substitute Back Now we have: \[ \lim_{x \to \frac{\pi}{2}} \cos x \cdot \log(\cos x) = 0 \] Thus, \[ (\cos x)^{\cos x} = e^{0} = 1 \] ### Step 7: Final Limit Calculation Now substitute back into the original limit: \[ L = \lim_{x \to \frac{\pi}{2}} \left[1 + 1\right]^2 = \left[2\right]^2 = 4 \] ### Conclusion The final answer is: \[ \lim_{x \to \frac{\pi}{2}} \left[1 + (\cos x)^{\cos x}\right]^2 = 4 \]

To solve the limit problem \( \lim_{x \to \frac{\pi}{2}} \left[1 + (\cos x)^{\cos x}\right]^2 \), we will follow these steps: ### Step 1: Simplify the Expression We start with the limit: \[ L = \lim_{x \to \frac{\pi}{2}} \left[1 + (\cos x)^{\cos x}\right]^2 \] We need to focus on the term \( (\cos x)^{\cos x} \) as \( x \) approaches \( \frac{\pi}{2} \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

Evaluate lim_(xto (pi^(-))/(2)) (cosx)^(cosx).

Evaluate : lim_(ararr(pi/2)^(-)) int_(0)^(a)(cosx)ln(cosx)dx

The value of lim_(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

lim_(x rarr0)(sin^2x)/(1-cosx)

If L=lim_(xrarr0)((e^(-x^(2)/2)-cosx)/(x^(2)tan^(2)x)) , then the value of 3L is equal to

lim_( xrarr0) (1-cosx)/(x^(2))

Statement -1: lim_(xrarr pi//2 ) (cot x-cosx)/((2x-pi)^3)=-(1)/(16) Statement 2 lim_(xrarr0) (tanx-sinx)/(x^3)=(1)/(2)

Evaluate: ("lim")_(x->pi/2)(cosx)^(cosx)

The value of lim_(xrarr(pi)/(3))(2-sqrt3sinx-cosx)/((3x-pi)^(2)) is equal to the reciprocal of the number

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. If lim(xrarroo) ((x+c)/(x-c))^(x)=4 then the value of e^(c) is

    Text Solution

    |

  2. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  3. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  4. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  5. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  6. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  7. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  8. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |

  9. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  10. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  11. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  12. The value of underset(xrarr1)(lim)(root(13)x-root7x)/(root5x-root3x) i...

    Text Solution

    |

  13. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  14. If f^(prime)(a)=1/4, t h e n(lim)(hvec0)(f(a+2h^2)-f(a-2h^2))/(f(a+h^3...

    Text Solution

    |

  15. (lim)(xvec0^+)1/(xsqrt(x))("a t a n"^(-1)(sqrt(x))/a-btan^(-1)(sqrt(x)...

    Text Solution

    |

  16. The value of lim(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2...

    Text Solution

    |

  17. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |

  18. The value of lim(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

    Text Solution

    |

  19. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  20. Number of integral values of lambda for which (lim)(xvec1)sec^(-1)((la...

    Text Solution

    |