Home
Class 12
MATHS
If agt0, b gt0 than lim(nrarroo) ((a-1+b...

If `agt0, b gt0` than `lim_(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=`

A

`b^((1)/(a))`

B

`a^((1)/(b))`

C

`a^(b)`

D

`b^(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{n \to \infty} \left( \frac{a - 1 + b^{\frac{1}{n}}}{a} \right)^{n} \) where \( a > 0 \) and \( b > 0 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ L = \lim_{n \to \infty} \left( \frac{a - 1 + b^{\frac{1}{n}}}{a} \right)^{n} \] This can be rewritten as: \[ L = \lim_{n \to \infty} \left( 1 + \frac{b^{\frac{1}{n}} - 1}{a} \right)^{n} \] ### Step 2: Identify the indeterminate form As \( n \to \infty \), \( b^{\frac{1}{n}} \) approaches 1, leading to the form \( 1^{\infty} \). To resolve this, we can use the exponential limit form. ### Step 3: Use the exponential limit We can use the fact that: \[ \lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^{n} = e^{x} \] Thus, we need to express our limit in this form. We rewrite: \[ L = \lim_{n \to \infty} e^{n \cdot \frac{b^{\frac{1}{n}} - 1}{a}} \] ### Step 4: Simplify the exponent Next, we need to evaluate: \[ \lim_{n \to \infty} n \cdot \frac{b^{\frac{1}{n}} - 1}{a} \] Using the property that \( b^{\frac{1}{n}} - 1 \) can be approximated by \( \frac{\log b}{n} \) as \( n \to \infty \), we have: \[ b^{\frac{1}{n}} - 1 \approx \frac{\log b}{n} \] Thus: \[ n \cdot (b^{\frac{1}{n}} - 1) \approx n \cdot \frac{\log b}{n} = \log b \] ### Step 5: Substitute back into the limit Now substituting back, we get: \[ L = e^{\frac{\log b}{a}} = b^{\frac{1}{a}} \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{n \to \infty} \left( \frac{a - 1 + b^{\frac{1}{n}}}{a} \right)^{n} = b^{\frac{1}{a}} \]

To solve the limit problem \( \lim_{n \to \infty} \left( \frac{a - 1 + b^{\frac{1}{n}}}{a} \right)^{n} \) where \( a > 0 \) and \( b > 0 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ L = \lim_{n \to \infty} \left( \frac{a - 1 + b^{\frac{1}{n}}}{a} \right)^{n} \] This can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If a >0,b >0 then (lim)_(n->oo)((a-1+b^(1/n))/a)^n= b^(1//a) b. a^(1/b) c. a^b d. b^a

lim_(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

lim_(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

If a,b in R^(+) then find Lim_(nrarroo) sum_(k=1)^(n) ( n)/((k+an)(k+bn)) is equal to

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .

If agt0 , then sum_(n=1)^(oo) ((a)/(a+1))^(n) equals

If k in I such that lim_(nrarroo) (cos.(kpi)/(4))^(2n)-(cos.(kpi)/(6))^(2n)=0, then

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2))^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. If lim(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim(xrarr0) [1+(f...

    Text Solution

    |

  2. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  3. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  4. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  5. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  6. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  7. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |

  8. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  9. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  10. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  11. The value of underset(xrarr1)(lim)(root(13)x-root7x)/(root5x-root3x) i...

    Text Solution

    |

  12. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  13. If f^(prime)(a)=1/4, t h e n(lim)(hvec0)(f(a+2h^2)-f(a-2h^2))/(f(a+h^3...

    Text Solution

    |

  14. (lim)(xvec0^+)1/(xsqrt(x))("a t a n"^(-1)(sqrt(x))/a-btan^(-1)(sqrt(x)...

    Text Solution

    |

  15. The value of lim(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2...

    Text Solution

    |

  16. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |

  17. The value of lim(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

    Text Solution

    |

  18. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  19. Number of integral values of lambda for which (lim)(xvec1)sec^(-1)((la...

    Text Solution

    |

  20. If lim(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

    Text Solution

    |