Home
Class 12
MATHS
If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n...

If `f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n)`, then the value of `lim_(xrarr0) (f(x)-1)/(x)` is

A

0

B

1

C

2

D

`3//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's break it down: ### Step 1: Understand the function \( f(x) \) We are given: \[ f(x) = \lim_{n \to \infty} \left( \frac{\cos(x)}{\sqrt{n}} \right)^n \] As \( n \) approaches infinity, we need to analyze the expression inside the limit. **Hint:** Identify the form of the limit as \( n \to \infty \). ### Step 2: Analyze the limit As \( n \to \infty \), \( \sqrt{n} \) also approaches infinity. Thus, \( \frac{\cos(x)}{\sqrt{n}} \) approaches \( 0 \) for any \( x \neq 0 \). The expression \( \left( \frac{\cos(x)}{\sqrt{n}} \right)^n \) takes the form \( 0^n \), which approaches \( 0 \). **Hint:** Consider the behavior of \( \cos(x) \) as \( n \) becomes very large. ### Step 3: Special case when \( x = 0 \) When \( x = 0 \): \[ f(0) = \lim_{n \to \infty} \left( \frac{\cos(0)}{\sqrt{n}} \right)^n = \lim_{n \to \infty} \left( \frac{1}{\sqrt{n}} \right)^n = \lim_{n \to \infty} \frac{1}{n^{n/2}} = 0 \] **Hint:** Evaluate \( f(x) \) at \( x = 0 \) to see if it changes the limit. ### Step 4: General case for \( f(x) \) For \( x \neq 0 \), we have: \[ f(x) = 0 \] Thus, we can conclude: \[ f(x) = 0 \text{ for all } x \neq 0 \] And \( f(0) = 0 \). **Hint:** Confirm that \( f(x) \) is continuous at \( x = 0 \). ### Step 5: Evaluate the limit \( \lim_{x \to 0} \frac{f(x) - 1}{x} \) Now we need to find: \[ \lim_{x \to 0} \frac{f(x) - 1}{x} \] Since \( f(x) = 0 \) for \( x \neq 0 \): \[ \lim_{x \to 0} \frac{0 - 1}{x} = \lim_{x \to 0} \frac{-1}{x} \] This limit does not exist as it approaches \( -\infty \) when \( x \) approaches \( 0 \) from the right and \( +\infty \) when approaching from the left. **Hint:** Analyze the limit behavior as \( x \) approaches \( 0 \) from both sides. ### Final Answer The limit \( \lim_{x \to 0} \frac{f(x) - 1}{x} \) does not exist (it diverges).

To solve the problem step by step, let's break it down: ### Step 1: Understand the function \( f(x) \) We are given: \[ f(x) = \lim_{n \to \infty} \left( \frac{\cos(x)}{\sqrt{n}} \right)^n \] As \( n \) approaches infinity, we need to analyze the expression inside the limit. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) (a^x-b^x)/(x) ,is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarr0) (x(5^x-1))/(1-cos x) , is

The value of lim_(xrarr0) (|x|)/(x) , is

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

lim_(xrarr0) ((x+1)^(5)-1)/(x)

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

lim_(xrarr0) (x^(2)-x)/(sinx)

Evaluate : lim_(xrarr0)((1-x)^(n)-1)/(x)

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. lim(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

    Text Solution

    |

  2. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  3. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  4. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  5. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  6. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |

  7. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  8. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  9. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  10. The value of underset(xrarr1)(lim)(root(13)x-root7x)/(root5x-root3x) i...

    Text Solution

    |

  11. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  12. If f^(prime)(a)=1/4, t h e n(lim)(hvec0)(f(a+2h^2)-f(a-2h^2))/(f(a+h^3...

    Text Solution

    |

  13. (lim)(xvec0^+)1/(xsqrt(x))("a t a n"^(-1)(sqrt(x))/a-btan^(-1)(sqrt(x)...

    Text Solution

    |

  14. The value of lim(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2...

    Text Solution

    |

  15. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |

  16. The value of lim(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

    Text Solution

    |

  17. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  18. Number of integral values of lambda for which (lim)(xvec1)sec^(-1)((la...

    Text Solution

    |

  19. If lim(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

    Text Solution

    |

  20. If lim(xrarr0)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0, then a+b is equal to

    Text Solution

    |