Home
Class 12
MATHS
Let f:RrarrR be such that f(a)=1, f(a)=2...

Let `f:RrarrR` be such that `f(a)=1, f(a)=2`. Then `lim_(x to 0)((f^(2)(a+x))/(f(a)))^(1//x)` is

A

`e^(2)`

B

`e^(4)`

C

`e^(-4)`

D

`1//e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem step-by-step, we start with the given function and the limit we need to evaluate: **Given:** - \( f(a) = 1 \) - \( f'(a) = 2 \) **We need to evaluate:** \[ \lim_{x \to 0} \left( \frac{f^2(a+x)}{f(a)} \right)^{\frac{1}{x}} \] ### Step 1: Substitute the known values Since \( f(a) = 1 \), we can simplify the expression: \[ \lim_{x \to 0} \left( \frac{f^2(a+x)}{1} \right)^{\frac{1}{x}} = \lim_{x \to 0} \left( f^2(a+x) \right)^{\frac{1}{x}} \] ### Step 2: Rewrite the limit This limit can be rewritten using the exponential function: \[ \lim_{x \to 0} \left( f^2(a+x) \right)^{\frac{1}{x}} = e^{\lim_{x \to 0} \frac{1}{x} \ln(f^2(a+x))} \] ### Step 3: Simplify the logarithm Using properties of logarithms: \[ \ln(f^2(a+x)) = 2 \ln(f(a+x)) \] Thus, we have: \[ \lim_{x \to 0} \frac{1}{x} \ln(f^2(a+x)) = \lim_{x \to 0} \frac{2 \ln(f(a+x))}{x} \] ### Step 4: Apply L'Hôpital's Rule As \( x \to 0 \), \( f(a+x) \to f(a) = 1 \), which means \( \ln(f(a+x)) \to \ln(1) = 0 \). Therefore, we have a \( \frac{0}{0} \) form, and we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{2 \ln(f(a+x))}{x} = 2 \lim_{x \to 0} \frac{f'(a+x)}{f(a+x)} \] ### Step 5: Evaluate the limit As \( x \to 0 \), \( f'(a+x) \to f'(a) = 2 \) and \( f(a+x) \to f(a) = 1 \): \[ \lim_{x \to 0} \frac{f'(a+x)}{f(a+x)} = \frac{2}{1} = 2 \] ### Step 6: Substitute back into the limit Thus: \[ \lim_{x \to 0} \frac{2 \ln(f(a+x))}{x} = 2 \cdot 2 = 4 \] ### Step 7: Final result Now substituting back into the exponential limit: \[ e^{\lim_{x \to 0} \frac{2 \ln(f(a+x))}{x}} = e^4 \] Therefore, the final answer is: \[ \lim_{x \to 0} \left( \frac{f^2(a+x)}{f(a)} \right)^{\frac{1}{x}} = e^4 \]

To solve the limit problem step-by-step, we start with the given function and the limit we need to evaluate: **Given:** - \( f(a) = 1 \) - \( f'(a) = 2 \) **We need to evaluate:** \[ ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f: RvecR be such that f(a)=1,f^(prime)(a)=2. Then (lim)_(xvec0)((f^2(a+x))/(f(a)))^(1//x) is a. e^2 b. e^4 c. e^(-4) d. 1//e

If f(a)=2 f'(a)=1 g(a)=-1 g'(a)=2 then lim_(xtoa)(g(x)f(a)-g(a)f(x))/(x-a) is

Let f:R in R be a continuous function such that f(1)=2. If lim_(x to 1) int_(2)^(f(x)) (2t)/(x-1)dt=4 , then the value of f'(1) is

For the function f(x) = 2 . Find lim_(x to 1) f(x)

Let f is twice differerntiable on R such that f (0)=1, f'(0) =0 and f''(0) =-1, then for a in R, lim _(xtooo) (f((a)/(sqrtx)))^(x)=

Let f :RtoR be a positive, increasing function with lim_(xtooo) (f(3x))/(f(x))=1 . Then lim_(xtooo) (f(2x))/(f(x)) is equal to

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Let f be differentiable function such that f'(x)=7-3/4(f(x))/x,(xgt0) and f(1)ne4" Then " lim_(xto0^+) xf(1/x)

Let f: RrarrR, where f(x)=sinx , Show that f is into.

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  2. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  3. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  4. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  5. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |

  6. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  7. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  8. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  9. The value of underset(xrarr1)(lim)(root(13)x-root7x)/(root5x-root3x) i...

    Text Solution

    |

  10. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  11. If f^(prime)(a)=1/4, t h e n(lim)(hvec0)(f(a+2h^2)-f(a-2h^2))/(f(a+h^3...

    Text Solution

    |

  12. (lim)(xvec0^+)1/(xsqrt(x))("a t a n"^(-1)(sqrt(x))/a-btan^(-1)(sqrt(x)...

    Text Solution

    |

  13. The value of lim(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2...

    Text Solution

    |

  14. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |

  15. The value of lim(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

    Text Solution

    |

  16. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  17. Number of integral values of lambda for which (lim)(xvec1)sec^(-1)((la...

    Text Solution

    |

  18. If lim(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

    Text Solution

    |

  19. If lim(xrarr0)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0, then a+b is equal to

    Text Solution

    |

  20. If lim(xrarroo) xlog(e)(|(alpha//x,1,gamma),(0,1//x,beta),(1,0,1//x)|)...

    Text Solution

    |