Home
Class 12
MATHS
The value of lim(xrarr(3pi)/(4)) (1+root...

The value of `lim_(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x)` is

A

`-1//2`

B

`-2//3`

C

`-3//2`

D

`-1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to \frac{3\pi}{4}} \frac{1 + \sqrt{3} \tan x}{1 - 2 \cos^2 x}, \] we will follow these steps: ### Step 1: Substitute \( x = \frac{3\pi}{4} \) First, we substitute \( x = \frac{3\pi}{4} \) into the expression to check if it results in an indeterminate form. - Calculate \( \tan\left(\frac{3\pi}{4}\right) \): \[ \tan\left(\frac{3\pi}{4}\right) = -1. \] - Calculate \( \cos\left(\frac{3\pi}{4}\right) \): \[ \cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}. \] - Therefore, \( \cos^2\left(\frac{3\pi}{4}\right) = \left(-\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \). Now substituting these values into the limit: \[ 1 + \sqrt{3} \tan\left(\frac{3\pi}{4}\right) = 1 + \sqrt{3}(-1) = 1 - \sqrt{3}, \] \[ 1 - 2 \cos^2\left(\frac{3\pi}{4}\right) = 1 - 2\left(\frac{1}{2}\right) = 1 - 1 = 0. \] This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator. #### Derivative of the Numerator: The numerator is \( 1 + \sqrt{3} \tan x \): \[ \frac{d}{dx}(1 + \sqrt{3} \tan x) = \sqrt{3} \sec^2 x. \] #### Derivative of the Denominator: The denominator is \( 1 - 2 \cos^2 x \): \[ \frac{d}{dx}(1 - 2 \cos^2 x) = -2 \cdot 2 \cos x (-\sin x) = 4 \cos x \sin x = 2 \sin(2x). \] ### Step 3: Rewrite the Limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to \frac{3\pi}{4}} \frac{\sqrt{3} \sec^2 x}{2 \sin(2x)}. \] ### Step 4: Substitute \( x = \frac{3\pi}{4} \) Again Now substitute \( x = \frac{3\pi}{4} \) into the new limit expression: - Calculate \( \sec^2\left(\frac{3\pi}{4}\right) \): \[ \sec\left(\frac{3\pi}{4}\right) = -\sqrt{2} \implies \sec^2\left(\frac{3\pi}{4}\right) = 2. \] - Calculate \( \sin(2 \cdot \frac{3\pi}{4}) = \sin\left(\frac{3\pi}{2}\right) = -1 \). Now substituting these values: \[ \lim_{x \to \frac{3\pi}{4}} \frac{\sqrt{3} \cdot 2}{2 \cdot (-1)} = \frac{2\sqrt{3}}{-2} = -\sqrt{3}. \] ### Final Answer Thus, the value of the limit is: \[ -\frac{1}{3}. \]

To find the limit \[ \lim_{x \to \frac{3\pi}{4}} \frac{1 + \sqrt{3} \tan x}{1 - 2 \cos^2 x}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of underset(xrarr(3pi)/(4))(lim)(1+root3(tanx))/(1-2cos^(2)x) is

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x+(5pi)/(4))) is equal to

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

The value of lim_(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of (lim)_(x->(3pi)/4)(1+t a n x1/3)/(1-2cos^2x) is (a) -1//2 (b.) -2//3 (c). -3//2 (d). -1//3

The value of lim_(xrarr(pi)/(3))(2-sqrt3sinx-cosx)/((3x-pi)^(2)) is equal to the reciprocal of the number

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to

If the value of lim_(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to lambda , then the value of 120lambda^(2) is equal to

Evaluate: (lim)_(x->(3pi)/4)(1+(tanx)^(1/3))/(1-2cos^2x)

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  2. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  3. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  4. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  5. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |

  6. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  7. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  8. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  9. The value of underset(xrarr1)(lim)(root(13)x-root7x)/(root5x-root3x) i...

    Text Solution

    |

  10. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  11. If f^(prime)(a)=1/4, t h e n(lim)(hvec0)(f(a+2h^2)-f(a-2h^2))/(f(a+h^3...

    Text Solution

    |

  12. (lim)(xvec0^+)1/(xsqrt(x))("a t a n"^(-1)(sqrt(x))/a-btan^(-1)(sqrt(x)...

    Text Solution

    |

  13. The value of lim(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2...

    Text Solution

    |

  14. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |

  15. The value of lim(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

    Text Solution

    |

  16. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  17. Number of integral values of lambda for which (lim)(xvec1)sec^(-1)((la...

    Text Solution

    |

  18. If lim(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

    Text Solution

    |

  19. If lim(xrarr0)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0, then a+b is equal to

    Text Solution

    |

  20. If lim(xrarroo) xlog(e)(|(alpha//x,1,gamma),(0,1//x,beta),(1,0,1//x)|)...

    Text Solution

    |