Home
Class 12
MATHS
If lim(xrarr0)(x^3)/(sqrt(a+x)(bx-sinx))...

If `lim_(xrarr0)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0`, then `a+b` is equal to

A

36

B

37

C

38

D

40

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the values of \( a \) and \( b \) such that: \[ \lim_{x \to 0} \frac{x^3}{\sqrt{a+x} (bx - \sin x)} = 1 \] ### Step 1: Analyze the limit As \( x \to 0 \), both the numerator \( x^3 \) and the denominator \( \sqrt{a+x} (bx - \sin x) \) approach 0, resulting in the indeterminate form \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule. ### Step 2: Differentiate the numerator and denominator Using L'Hôpital's Rule, we differentiate the numerator and denominator: - The derivative of the numerator \( x^3 \) is \( 3x^2 \). - The denominator is \( \sqrt{a+x} (bx - \sin x) \). We will need to use the product rule for differentiation. Let \( u = \sqrt{a+x} \) and \( v = bx - \sin x \). Using the product rule: \[ \frac{d}{dx}(uv) = u'v + uv' \] Calculating \( u' \) and \( v' \): - \( u' = \frac{1}{2\sqrt{a+x}} \) - \( v' = b - \cos x \) Thus, the derivative of the denominator is: \[ \frac{1}{2\sqrt{a+x}}(bx - \sin x) + \sqrt{a+x}(b - \cos x) \] ### Step 3: Apply L'Hôpital's Rule Now we can write the limit again: \[ \lim_{x \to 0} \frac{3x^2}{\frac{1}{2\sqrt{a}}(0 - 0) + \sqrt{a}(b - 1)} \] As \( x \to 0 \), \( \sin x \to 0 \) and \( \cos x \to 1 \). Therefore, we simplify: \[ = \lim_{x \to 0} \frac{3x^2}{\sqrt{a}(b - 1)} \] ### Step 4: Set the limit equal to 1 For the limit to equal 1, we need: \[ \frac{3x^2}{\sqrt{a}(b - 1)} \to 1 \text{ as } x \to 0 \] This implies: \[ \sqrt{a}(b - 1) = 0 \] Since \( a > 0 \), we must have \( b - 1 = 0 \), leading to: \[ b = 1 \] ### Step 5: Substitute \( b \) back into the limit Now we substitute \( b = 1 \) back into the limit: \[ \lim_{x \to 0} \frac{3x^2}{\sqrt{a}(1 - 1)} \text{ is still } 0 \] We need to differentiate again. The next derivatives will give: \[ \lim_{x \to 0} \frac{6x}{\sqrt{a}(0 + \sin x)} = \lim_{x \to 0} \frac{6x}{\sqrt{a}x} = \frac{6}{\sqrt{a}} \] Setting this equal to 1 gives: \[ \frac{6}{\sqrt{a}} = 1 \implies \sqrt{a} = 6 \implies a = 36 \] ### Step 6: Calculate \( a + b \) Now we have: \[ a = 36, \quad b = 1 \] Thus: \[ a + b = 36 + 1 = 37 \] ### Final Answer The value of \( a + b \) is: \[ \boxed{37} \]

To solve the limit problem, we need to find the values of \( a \) and \( b \) such that: \[ \lim_{x \to 0} \frac{x^3}{\sqrt{a+x} (bx - \sin x)} = 1 \] ### Step 1: Analyze the limit As \( x \to 0 \), both the numerator \( x^3 \) and the denominator \( \sqrt{a+x} (bx - \sin x) \) approach 0, resulting in the indeterminate form \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(xrarr0) (3sqrt(1+x-1))/(x)

lim_(xrarr0)(x^3 log x)

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0) (sinx)/(x)= ?

lim_(xrarr0) (sqrt(1+x)-1)/(x)=?

lim_(xrarr0) (sinax)/(bx)

lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?

lim_(xrarr0) (sin4x)/(1-sqrt(1-x)) , is

If lim_(xrarr0) (x(1+acos x)-bsin x)/(x)=1 , then a-b, are

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  2. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  3. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  4. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  5. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |

  6. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  7. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  8. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  9. The value of underset(xrarr1)(lim)(root(13)x-root7x)/(root5x-root3x) i...

    Text Solution

    |

  10. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  11. If f^(prime)(a)=1/4, t h e n(lim)(hvec0)(f(a+2h^2)-f(a-2h^2))/(f(a+h^3...

    Text Solution

    |

  12. (lim)(xvec0^+)1/(xsqrt(x))("a t a n"^(-1)(sqrt(x))/a-btan^(-1)(sqrt(x)...

    Text Solution

    |

  13. The value of lim(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2...

    Text Solution

    |

  14. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |

  15. The value of lim(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

    Text Solution

    |

  16. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  17. Number of integral values of lambda for which (lim)(xvec1)sec^(-1)((la...

    Text Solution

    |

  18. If lim(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

    Text Solution

    |

  19. If lim(xrarr0)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0, then a+b is equal to

    Text Solution

    |

  20. If lim(xrarroo) xlog(e)(|(alpha//x,1,gamma),(0,1//x,beta),(1,0,1//x)|)...

    Text Solution

    |