Home
Class 12
MATHS
If lim(xrarroo) xlog(e)(|(alpha//x,1,gam...

If `lim_(xrarroo) xlog_(e)(|(alpha//x,1,gamma),(0,1//x,beta),(1,0,1//x)|)=-5.` where `alpha, beta, gamma` are finite real numbers, then

A

`alpha=2, beta=1, gamma in R`

B

`alpha=2, beta=2, gamma=5`

C

`alpha in R, beta =1, gamma in R`

D

`alpha in R, beta = 1, gamma=5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we will follow these steps: ### Step 1: Write the Determinant We start with the determinant given in the problem: \[ D = \begin{vmatrix} \frac{\alpha}{x} & 1 & \gamma \\ 0 & \frac{1}{x} & \beta \\ 1 & 0 & \frac{1}{x} \end{vmatrix} \] ### Step 2: Calculate the Determinant Using the formula for the determinant of a 3x3 matrix, we have: \[ D = \frac{\alpha}{x} \left( \frac{1}{x} \cdot \frac{1}{x} - 0 \cdot 0 \right) - 1 \left( 0 \cdot \frac{1}{x} - \beta \cdot 1 \right) + \gamma \left( 0 \cdot 0 - 1 \cdot \frac{1}{x} \right) \] Calculating this gives: \[ D = \frac{\alpha}{x^3} + \beta - \frac{\gamma}{x} \] ### Step 3: Substitute the Determinant into the Limit Now we substitute \(D\) into the limit expression: \[ \lim_{x \to \infty} x \log\left(D\right) = \lim_{x \to \infty} x \log\left(\beta + \frac{\alpha}{x^3} - \frac{\gamma}{x}\right) \] ### Step 4: Analyze the Limit as \(x \to \infty\) As \(x\) approaches infinity, \(\frac{\alpha}{x^3} \to 0\) and \(\frac{\gamma}{x} \to 0\). Therefore, we have: \[ \lim_{x \to \infty} x \log\left(\beta\right) \] We need this limit to equal \(-5\). ### Step 5: Determine Conditions for the Limit For the limit to exist and be equal to \(-5\), we require: 1. \(\beta = 1\) (since \(\log(1) = 0\) gives us the indeterminate form \( \infty \cdot 0\)). 2. Substitute \(\beta = 1\) back into the limit: \[ \lim_{x \to \infty} x \log\left(1 + \frac{\alpha}{x^3} - \frac{\gamma}{x}\right) \] ### Step 6: Use the Expansion for Logarithm Using the logarithmic expansion \(\log(1 + u) \approx u\) for small \(u\): \[ \lim_{x \to \infty} x \left(\frac{\alpha}{x^3} - \frac{\gamma}{x}\right) = \lim_{x \to \infty} \left(\frac{\alpha}{x^2} - \gamma\right) \] As \(x \to \infty\), \(\frac{\alpha}{x^2} \to 0\), so we have: \[ -\gamma = -5 \implies \gamma = 5 \] ### Step 7: Conclusion for \(\alpha\) Since \(\alpha\) does not affect the limit, it can take any real value. Thus, we conclude: - \(\alpha \in \mathbb{R}\) - \(\beta = 1\) - \(\gamma = 5\) ### Final Answer The values are: - \(\alpha \in \mathbb{R}\) - \(\beta = 1\) - \(\gamma = 5\)

To solve the limit problem given in the question, we will follow these steps: ### Step 1: Write the Determinant We start with the determinant given in the problem: \[ D = \begin{vmatrix} \frac{\alpha}{x} & 1 & \gamma \\ 0 & \frac{1}{x} & \beta \\ ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If A^(-1)=[(sin^2alpha,0,0),(0,sin^2 beta,0), (0,0,sin^2gamma)] and B^(-1)=[(cos^2alpha,0,0),(0,cos^2 beta,0), (0,0,cos^2gamma)] where alpha, beta, gamma are any real numbers and C=A^(-5)+B^(-5)+5A^(-1)B^(-1)(A^(-3) +B^(-3))+10 A^(-2)B^(-2)(A^(-1)+B^(-1)) then find |C|

Show that [[x-3,x-4,x-alpha],[x-2,x-3,x-beta],[x-1,x-2,x-gamma]]=0 where alpha,beta,gamma are in AP

Let alpha,beta, gamma be three real numbers satisfying [(alpha,beta,gamma)][(2,-1,1),(-1,-1,-2),(-1,2,1)]=[(0,0,0)] . If the point A(alpha, beta, gamma) lies on the plane 2x+y+3z=2 , then 3alpha+3beta-6gamma is equal to

If (1+alpha)/(1-alpha),(1+beta)/(1-beta), (1+gamma)/(1-gamma) are the cubic equation f(x) = 0 where alpha,beta,gamma are the roots of the cubic equation 3x^3 - 2x + 5 =0 , then the number of negative real roots of the equation f(x) = 0 is :

If (1+alpha)/(1-alpha),(1+beta)/(1-beta), (1+gamma)/(1-gamma) are the cubic equation f(x) = 0 where alpha,beta,gamma are the roots of the cubic equation 3x^3 - 2x + 5 =0 , then the number of negative real roots of the equation f(x) = 0 is :

If alpha, beta. gamma are the roots of x^3 + px^2 + q = 0, where q=0, ther Delta=[(1/alpha,1/beta,1/gamma),(1/beta,1/gamma,1/alpha),(1/gamma,1/alpha,1/beta)] equals (A) alpha beta gamma (B) alpha +beta + gamma (C) 0 (D) none of these

The minimum value of the expression sin alpha + sin beta+ sin gamma , where alpha,beta,gamma are real numbers satisfying alpha+beta+gamma=pi is

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

If A(alpha, (1)/(alpha)), B(beta, (1)/(beta)), C(gamma,(1)/(gamma)) be the vertices of a Delta ABC , where alpha, beta are the roots of x^(2)-6ax+2=0, beta, gamma are the roots of x^(2)-6bx+3=0 and gamma, alpha are the roots of x^(2)-6cx + 6 =0 , a, b, c being positive. The coordinates of orthocentre of Delta ABC is

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

CENGAGE ENGLISH-LIMITS-Single Correct Answer Type
  1. If agt0, b gt0 than lim(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

    Text Solution

    |

  2. If f(x)=lim(nrarroo) (cos(x)/(sqrtn))^(n), then the value of lim(xrarr...

    Text Solution

    |

  3. lim(xrarr0) (log(e^(x^(2))+2sqrtx))/(tansqrtx) is equal to

    Text Solution

    |

  4. Let f:RrarrR be such that f(a)=1, f(a)=2. Then lim(x to 0)((f^(2)(a+x)...

    Text Solution

    |

  5. The value of (lim)(nvecoo)((sqrt(n^2+n)-1)/n)^2sqrt(n^(2+n)-1) is e b....

    Text Solution

    |

  6. If f(n)=underset(xto0)lim{(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"s...

    Text Solution

    |

  7. lim(nrarroo) (1-x+x.root n e)^(n) is equal to

    Text Solution

    |

  8. The value of lim(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

    Text Solution

    |

  9. The value of underset(xrarr1)(lim)(root(13)x-root7x)/(root5x-root3x) i...

    Text Solution

    |

  10. The value of lim(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

    Text Solution

    |

  11. If f^(prime)(a)=1/4, t h e n(lim)(hvec0)(f(a+2h^2)-f(a-2h^2))/(f(a+h^3...

    Text Solution

    |

  12. (lim)(xvec0^+)1/(xsqrt(x))("a t a n"^(-1)(sqrt(x))/a-btan^(-1)(sqrt(x)...

    Text Solution

    |

  13. The value of lim(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2...

    Text Solution

    |

  14. Let f : R rarr R be a differentiable function at x = 0 satisfying f(0)...

    Text Solution

    |

  15. The value of lim(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

    Text Solution

    |

  16. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  17. Number of integral values of lambda for which (lim)(xvec1)sec^(-1)((la...

    Text Solution

    |

  18. If lim(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

    Text Solution

    |

  19. If lim(xrarr0)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0, then a+b is equal to

    Text Solution

    |

  20. If lim(xrarroo) xlog(e)(|(alpha//x,1,gamma),(0,1//x,beta),(1,0,1//x)|)...

    Text Solution

    |