Home
Class 12
MATHS
int(secx."cosec"x)/(2cotx-secx"cosec x")...

`int(secx."cosec"x)/(2cotx-secx"cosec x")dx` is equal to

A

`(1)/(2)ln|sec2x+tan2x|+C`

B

`ln|secx+"cosec x"|+C`

C

`ln |secx+Tanx|+C`

D

`(1)/(2)ln|secx+" cosec x"|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sec x \cdot \csc x}{2 \cot x - \sec x \cdot \csc x} \, dx, \] we will follow these steps: ### Step 1: Rewrite the integrand in terms of sine and cosine We start by rewriting the trigonometric functions in terms of sine and cosine: \[ \sec x = \frac{1}{\cos x}, \quad \csc x = \frac{1}{\sin x}, \quad \cot x = \frac{\cos x}{\sin x}. \] Substituting these into the integral gives: \[ I = \int \frac{\frac{1}{\cos x} \cdot \frac{1}{\sin x}}{2 \cdot \frac{\cos x}{\sin x} - \frac{1}{\cos x} \cdot \frac{1}{\sin x}} \, dx. \] ### Step 2: Simplify the denominator The denominator simplifies as follows: \[ 2 \cot x - \sec x \cdot \csc x = 2 \cdot \frac{\cos x}{\sin x} - \frac{1}{\sin x \cos x}. \] Finding a common denominator: \[ = \frac{2 \cos^2 x - 1}{\sin x \cos x}. \] ### Step 3: Substitute back into the integral Now substituting this back into the integral gives: \[ I = \int \frac{\frac{1}{\sin x \cos x}}{\frac{2 \cos^2 x - 1}{\sin x \cos x}} \, dx. \] This simplifies to: \[ I = \int \frac{1}{2 \cos^2 x - 1} \, dx. \] ### Step 4: Recognize the trigonometric identity Notice that: \[ 2 \cos^2 x - 1 = \cos 2x. \] So we can rewrite the integral as: \[ I = \int \frac{1}{\cos 2x} \, dx = \int \sec 2x \, dx. \] ### Step 5: Integrate secant function The integral of \(\sec 2x\) is known: \[ \int \sec 2x \, dx = \frac{1}{2} \ln | \sec 2x + \tan 2x | + C, \] where \(C\) is the constant of integration. ### Final Answer Thus, the final answer for the integral is: \[ I = \frac{1}{2} \ln | \sec 2x + \tan 2x | + C. \] ---

To solve the integral \[ I = \int \frac{\sec x \cdot \csc x}{2 \cot x - \sec x \cdot \csc x} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(1)/(tanx+cotx+secx+"cosec "x)dx is equal to

int(1)/(tanx+cotx+secx+"cosec "x)dx is equal to

inte^(tanx)(secx-sinx)dx is equal to

int sqrt(1+secx) dx is equal to:

int1/(sec x + cosec x) dx

int1/(sec x + cosec x) dx

int (dx)/(sec x + "cosec x")

int(secx)/(sqrt(cos2x)) dx is equal to

inte^(tanx)(secx-sinx)dx"is equal to"

The value of int(x^(2)+cos^(2)x)/(1+x^(2))"cosec"^(2)x dx is equal to:

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. Evaluate: int(cos5x+cos4x)/(1-2cos3x)\ dx

    Text Solution

    |

  2. int(secx."cosec"x)/(2cotx-secx"cosec x")dx is equal to

    Text Solution

    |

  3. Evaluate: int(1)/(x)ln((x)/(e^(x)))dx=

    Text Solution

    |

  4. Evaluate int((cosx)^(n-1))/((sinx)^(n+1))dx= (A) -cot^n x/n+...

    Text Solution

    |

  5. If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is...

    Text Solution

    |

  6. If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Asqrt(1-9x^(2))+B(cos^(-...

    Text Solution

    |

  7. If int(tan^(9)x)dx=f(x)+log|cosx|, where f(x) is a polynomial of degre...

    Text Solution

    |

  8. int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log(e)(f(x))+g(x)+C where C is the...

    Text Solution

    |

  9. Evaluate:int(x+x^(2/3)+x^(1/6))/(x(1+x^(1/3)))dx equals

    Text Solution

    |

  10. int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx gt0 is equal to

    Text Solution

    |

  11. If x^2!=n pi-1, n in N. Then, the value of int x sqrt((2sin(x^2+1)-sin...

    Text Solution

    |

  12. The value of int("cosec x")/(cos^(2)(1+logtan.(x)/(2)))dx is

    Text Solution

    |

  13. Evaluate: int(dx)/(xsqrt(x^(6)-16))=

    Text Solution

    |

  14. int (dx)/(cos (2 x)cos (4x)) is equal to

    Text Solution

    |

  15. intx2^(ln(x^(2)+1))dx is equal to

    Text Solution

    |

  16. If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, ...

    Text Solution

    |

  17. Evaluate: int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

    Text Solution

    |

  18. Evaluate: int((2x+1))/((x^(2)+4x+1)^(3//2))dx

    Text Solution

    |

  19. If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of th...

    Text Solution

    |

  20. The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

    Text Solution

    |