Home
Class 12
MATHS
Evaluate: int(1)/(x)ln((x)/(e^(x)))dx=...

Evaluate: `int(1)/(x)ln((x)/(e^(x)))dx=`

A

`(1)/(2)e^(x)-lnx+C`

B

`(1)/(2)lnx-e^(x)+C`

C

`(1)/(2)(lnx)^(2)-x+C`

D

`(e^(x))/(2x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{1}{x} \ln\left(\frac{x}{e^x}\right) \, dx \), we can follow these steps: ### Step 1: Simplify the logarithm Using the property of logarithms, we can rewrite the integrand: \[ \ln\left(\frac{x}{e^x}\right) = \ln(x) - \ln(e^x) = \ln(x) - x \] Thus, we can express the integral as: \[ I = \int \frac{1}{x} \left(\ln(x) - x\right) \, dx \] ### Step 2: Split the integral We can separate the integral into two parts: \[ I = \int \frac{\ln(x)}{x} \, dx - \int 1 \, dx \] ### Step 3: Evaluate the first integral The first integral, \( \int \frac{\ln(x)}{x} \, dx \), can be solved using substitution. Let \( t = \ln(x) \), then \( dt = \frac{1}{x} \, dx \) or \( dx = x \, dt = e^t \, dt \). Therefore: \[ \int \frac{\ln(x)}{x} \, dx = \int t \, dt = \frac{t^2}{2} + C = \frac{(\ln(x))^2}{2} + C \] ### Step 4: Evaluate the second integral The second integral is straightforward: \[ \int 1 \, dx = x \] ### Step 5: Combine the results Putting it all together, we have: \[ I = \frac{(\ln(x))^2}{2} - x + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{1}{x} \ln\left(\frac{x}{e^x}\right) \, dx = \frac{(\ln(x))^2}{2} - x + C \] ---

To evaluate the integral \( I = \int \frac{1}{x} \ln\left(\frac{x}{e^x}\right) \, dx \), we can follow these steps: ### Step 1: Simplify the logarithm Using the property of logarithms, we can rewrite the integrand: \[ \ln\left(\frac{x}{e^x}\right) = \ln(x) - \ln(e^x) = \ln(x) - x \] Thus, we can express the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x+1)/(x\ (1+x\ e^x))\ dx

Evaluate int(x+1)/(x(x+log_(e)x))dx

Evaluate: int((x-1)e^x)/((x+1)^3)dx

Evaluate int_(0)^(1)(ln(1+x))/(1+x)dx

Evaluate: int(e^x+1)/(e^x+x)dx

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

Evaluate: int(log(1+1/x))/(x(1+x))dx

Evaluate: int(log(1+1/x))/(x(1+x))dx

Evaluate: int(x+1)+e^x\ dx

Evaluate: int(x+1+e^x)\ dx

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. Evaluate: int(cos5x+cos4x)/(1-2cos3x)\ dx

    Text Solution

    |

  2. int(secx."cosec"x)/(2cotx-secx"cosec x")dx is equal to

    Text Solution

    |

  3. Evaluate: int(1)/(x)ln((x)/(e^(x)))dx=

    Text Solution

    |

  4. Evaluate int((cosx)^(n-1))/((sinx)^(n+1))dx= (A) -cot^n x/n+...

    Text Solution

    |

  5. If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is...

    Text Solution

    |

  6. If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Asqrt(1-9x^(2))+B(cos^(-...

    Text Solution

    |

  7. If int(tan^(9)x)dx=f(x)+log|cosx|, where f(x) is a polynomial of degre...

    Text Solution

    |

  8. int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log(e)(f(x))+g(x)+C where C is the...

    Text Solution

    |

  9. Evaluate:int(x+x^(2/3)+x^(1/6))/(x(1+x^(1/3)))dx equals

    Text Solution

    |

  10. int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx gt0 is equal to

    Text Solution

    |

  11. If x^2!=n pi-1, n in N. Then, the value of int x sqrt((2sin(x^2+1)-sin...

    Text Solution

    |

  12. The value of int("cosec x")/(cos^(2)(1+logtan.(x)/(2)))dx is

    Text Solution

    |

  13. Evaluate: int(dx)/(xsqrt(x^(6)-16))=

    Text Solution

    |

  14. int (dx)/(cos (2 x)cos (4x)) is equal to

    Text Solution

    |

  15. intx2^(ln(x^(2)+1))dx is equal to

    Text Solution

    |

  16. If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, ...

    Text Solution

    |

  17. Evaluate: int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

    Text Solution

    |

  18. Evaluate: int((2x+1))/((x^(2)+4x+1)^(3//2))dx

    Text Solution

    |

  19. If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of th...

    Text Solution

    |

  20. The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

    Text Solution

    |