Home
Class 12
MATHS
Evaluate int((cosx)^(n-1))/((sinx)^(n+1)...

Evaluate `int((cosx)^(n-1))/((sinx)^(n+1))dx=`
(A) `-cot^n x/n+c`
(B) `-cot^n x/(n+1)+c`
(C) `cot^n x/n+c`
(D) `cot^n x/(n+1)+c`

A

`(cot^(n)x)/(n)`

B

`(-cot^(n-1)x)/(n-1)`

C

`(-cot^(n)x)/(n)`

D

`(cot^(n-1)x)/(n-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{(\cos x)^{n-1}}{(\sin x)^{n+1}} \, dx, \] we can follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral in a more manageable form. We know that \[ \frac{1}{(\sin x)^{n+1}} = \frac{1}{\sin^2 x} \cdot \frac{1}{(\sin x)^{n-1}}. \] Thus, we can express the integral as: \[ I = \int \frac{(\cos x)^{n-1}}{\sin^2 x} \cdot \frac{1}{(\sin x)^{n-1}} \, dx. \] ### Step 2: Use Trigonometric Identities We can use the identity \(\frac{\cos^2 x}{\sin^2 x} = \cot^2 x\) to rewrite the integral: \[ I = \int (\cos x)^{n-1} \cdot \frac{1}{\sin^2 x} \cdot \frac{1}{(\sin x)^{n-1}} \, dx = \int (\cot x)^{n-1} \cdot \frac{1}{\sin^2 x} \, dx. \] ### Step 3: Substitution Let \(t = \cot x\). Then, we have: \[ dt = -\csc^2 x \, dx \quad \Rightarrow \quad dx = -\frac{dt}{\csc^2 x} = -\frac{dt}{1 + t^2}. \] ### Step 4: Change of Variables Substituting \(t\) into the integral, we get: \[ I = -\int t^{n-1} \, dt. \] ### Step 5: Integrate Now we can integrate: \[ I = -\frac{t^n}{n} + C. \] ### Step 6: Substitute Back Substituting back \(t = \cot x\): \[ I = -\frac{\cot^n x}{n} + C. \] ### Final Result Thus, the evaluated integral is: \[ I = -\frac{\cot^n x}{n} + C. \] ### Conclusion The correct answer is option (A): \[ -\frac{\cot^n x}{n} + C. \]

To evaluate the integral \[ I = \int \frac{(\cos x)^{n-1}}{(\sin x)^{n+1}} \, dx, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^x(1+n x^(n-1)-x^(2n))/((1-x^n)sqrt(1-x^(2n)))dx

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

If I=int ((((sinx)^n-sinx)^(1/n) cosx)/((sinx)^(n+1) )) dx is eqaul to (a) (n/(n^2-1))(1-1/(sinx^(n-1)))^(1/n+1)+c (b) (n/(n^2+1))(1-1/(sinx^(n-1)))^(1/n+1)+c (c) (n/(n^2+1))(1-1/(sinx^(n-1)))^(1/n)+c (d) (n/(n^2-1))(1-1/(sinx))^(1/n+1)+c

ifint(dx)/(x^2(x^n+1)^(((n-1)/n)) )=-[f(x)]^(1/n)+c ,t h e nf(x)i s (a) (1+x^n) (b) 1+x^(-1) (c) x^n+x^(-n) (d) none of these

The value of (lim)_(x->oo)(n !)/((n+1)!-(n)!) is a. 1 b . -1 c. 0 d. none of these

Evaluate int_(0)^(1)(tx+1-x)^(n)dx , where n is a positive integer and t is a parameter independent of x . Hence , show that ∫ 0 1 ​ x k (1−x) n−k dx= [ n C k ​ (n+1)] P ​ fork=0,1,......n, then P=

If (d)/(dx)[ x^(n+1)+c]=(n+1)x^(n) , then find int x^(n)dx .

If \ ^n C_r+\ ^n C_(r+1)=\ \ ^(n+1)C_x ,\ t h e n x = a. r b. r-1 c. n d. r+1

If sinx+cos e cx=2, then sin^n x+cos e c^n x is equal to 2 (b) 2^n (c) 2^(n-1) (d) 2^(n-2)

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. int(secx."cosec"x)/(2cotx-secx"cosec x")dx is equal to

    Text Solution

    |

  2. Evaluate: int(1)/(x)ln((x)/(e^(x)))dx=

    Text Solution

    |

  3. Evaluate int((cosx)^(n-1))/((sinx)^(n+1))dx= (A) -cot^n x/n+...

    Text Solution

    |

  4. If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is...

    Text Solution

    |

  5. If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Asqrt(1-9x^(2))+B(cos^(-...

    Text Solution

    |

  6. If int(tan^(9)x)dx=f(x)+log|cosx|, where f(x) is a polynomial of degre...

    Text Solution

    |

  7. int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log(e)(f(x))+g(x)+C where C is the...

    Text Solution

    |

  8. Evaluate:int(x+x^(2/3)+x^(1/6))/(x(1+x^(1/3)))dx equals

    Text Solution

    |

  9. int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx gt0 is equal to

    Text Solution

    |

  10. If x^2!=n pi-1, n in N. Then, the value of int x sqrt((2sin(x^2+1)-sin...

    Text Solution

    |

  11. The value of int("cosec x")/(cos^(2)(1+logtan.(x)/(2)))dx is

    Text Solution

    |

  12. Evaluate: int(dx)/(xsqrt(x^(6)-16))=

    Text Solution

    |

  13. int (dx)/(cos (2 x)cos (4x)) is equal to

    Text Solution

    |

  14. intx2^(ln(x^(2)+1))dx is equal to

    Text Solution

    |

  15. If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, ...

    Text Solution

    |

  16. Evaluate: int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

    Text Solution

    |

  17. Evaluate: int((2x+1))/((x^(2)+4x+1)^(3//2))dx

    Text Solution

    |

  18. If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of th...

    Text Solution

    |

  19. The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

    Text Solution

    |

  20. Evaluate :int(dx)/(xsqrt(x^(6)+1)) equals

    Text Solution

    |