Home
Class 12
MATHS
If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27...

If `int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C` where C is a constant of integration, then the value of k is equal to

A

3

B

6

C

9

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral equation and find the value of \( k \), we start with the equation: \[ \int x^{26} (x-1)^{17} (5x-3) \, dx = \frac{x^{27} (x-1)^{18}}{k} + C \] ### Step 1: Differentiate both sides with respect to \( x \) Using the Fundamental Theorem of Calculus, we differentiate the left-hand side and the right-hand side: \[ \frac{d}{dx} \left( \int x^{26} (x-1)^{17} (5x-3) \, dx \right) = x^{26} (x-1)^{17} (5x-3) \] For the right-hand side, we apply the constant multiple rule and the product rule: \[ \frac{d}{dx} \left( \frac{x^{27} (x-1)^{18}}{k} \right) = \frac{1}{k} \frac{d}{dx} \left( x^{27} (x-1)^{18} \right) \] ### Step 2: Differentiate \( x^{27} (x-1)^{18} \) using the product rule Let \( u = x^{27} \) and \( v = (x-1)^{18} \). Then: \[ \frac{du}{dx} = 27x^{26}, \quad \frac{dv}{dx} = 18(x-1)^{17} \] Applying the product rule: \[ \frac{d}{dx} (uv) = u \frac{dv}{dx} + v \frac{du}{dx} \] Substituting the derivatives: \[ \frac{d}{dx} (x^{27} (x-1)^{18}) = x^{27} \cdot 18(x-1)^{17} + (x-1)^{18} \cdot 27x^{26} \] ### Step 3: Combine the derivatives Now we have: \[ x^{26} (x-1)^{17} (5x-3) = \frac{1}{k} \left( x^{27} \cdot 18(x-1)^{17} + (x-1)^{18} \cdot 27x^{26} \right) \] ### Step 4: Factor out common terms We can factor out \( x^{26} (x-1)^{17} \) from both sides: \[ x^{26} (x-1)^{17} (5x-3) = \frac{1}{k} x^{26} (x-1)^{17} \left( 18x + 27(x-1) \right) \] ### Step 5: Simplify the equation Cancel \( x^{26} (x-1)^{17} \) from both sides (assuming \( x \neq 0 \) and \( x \neq 1 \)): \[ 5x - 3 = \frac{1}{k} (18x + 27(x-1)) \] Expanding the right-hand side: \[ 5x - 3 = \frac{1}{k} (18x + 27x - 27) = \frac{1}{k} (45x - 27) \] ### Step 6: Cross-multiply to solve for \( k \) Cross-multiplying gives: \[ k(5x - 3) = 45x - 27 \] ### Step 7: Equate coefficients To find \( k \), we can equate coefficients of \( x \) and the constant terms. From the coefficients of \( x \): \[ 5k = 45 \implies k = \frac{45}{5} = 9 \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{9} \]

To solve the given integral equation and find the value of \( k \), we start with the equation: \[ \int x^{26} (x-1)^{17} (5x-3) \, dx = \frac{x^{27} (x-1)^{18}}{k} + C \] ### Step 1: Differentiate both sides with respect to \( x \) ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to A. ( 3 ) /( x ^ 3 ) B. - ( 1 ) / ( 2x ^ 3 ) C. - ( 1 ) / ( 2 x ^ 2 ) D. - (1 )/(6x ^ 3 )

The integral I=int2^((2^(x)+x))dx=lambda. (2^(2^(x)))+C (where, C is the constant of integration). Then the value of sqrtlambda is equal to

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

If the value of integral int(x+sqrt(x^2 -1))^(2)dx = ax^3 - x + b(x^2 - 1)^(1/b), +C (where, C is the constant of integration), then a xx b is equal to

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. Evaluate: int(1)/(x)ln((x)/(e^(x)))dx=

    Text Solution

    |

  2. Evaluate int((cosx)^(n-1))/((sinx)^(n+1))dx= (A) -cot^n x/n+...

    Text Solution

    |

  3. If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is...

    Text Solution

    |

  4. If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Asqrt(1-9x^(2))+B(cos^(-...

    Text Solution

    |

  5. If int(tan^(9)x)dx=f(x)+log|cosx|, where f(x) is a polynomial of degre...

    Text Solution

    |

  6. int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log(e)(f(x))+g(x)+C where C is the...

    Text Solution

    |

  7. Evaluate:int(x+x^(2/3)+x^(1/6))/(x(1+x^(1/3)))dx equals

    Text Solution

    |

  8. int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx gt0 is equal to

    Text Solution

    |

  9. If x^2!=n pi-1, n in N. Then, the value of int x sqrt((2sin(x^2+1)-sin...

    Text Solution

    |

  10. The value of int("cosec x")/(cos^(2)(1+logtan.(x)/(2)))dx is

    Text Solution

    |

  11. Evaluate: int(dx)/(xsqrt(x^(6)-16))=

    Text Solution

    |

  12. int (dx)/(cos (2 x)cos (4x)) is equal to

    Text Solution

    |

  13. intx2^(ln(x^(2)+1))dx is equal to

    Text Solution

    |

  14. If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, ...

    Text Solution

    |

  15. Evaluate: int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

    Text Solution

    |

  16. Evaluate: int((2x+1))/((x^(2)+4x+1)^(3//2))dx

    Text Solution

    |

  17. If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of th...

    Text Solution

    |

  18. The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

    Text Solution

    |

  19. Evaluate :int(dx)/(xsqrt(x^(6)+1)) equals

    Text Solution

    |

  20. int(dx)/((1+sqrtx)^(2010))=2[(1)/(alpha(1+sqrtx)^(alpha))-(1)/(beta(1+...

    Text Solution

    |