Home
Class 12
MATHS
If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2...

If `int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Asqrt(1-9x^(2))+B(cos^(-1)3x)^(3)+C,` then A-B is

A

`(2)/(9)`

B

`-(1)/(9)`

C

`(1)/(9)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x + (\cos^{-1}(3x))^2}{\sqrt{1 - 9x^2}} \, dx = A\sqrt{1 - 9x^2} + B(\cos^{-1}(3x))^3 + C, \] we will break the integral into two parts: 1. \( I_1 = \int \frac{x}{\sqrt{1 - 9x^2}} \, dx \) 2. \( I_2 = \int \frac{(\cos^{-1}(3x))^2}{\sqrt{1 - 9x^2}} \, dx \) ### Step 1: Solve \( I_1 \) For \( I_1 \): Let \( t = 1 - 9x^2 \). Then, differentiating gives: \[ dt = -18x \, dx \quad \Rightarrow \quad dx = -\frac{dt}{18x} \] Substituting \( x^2 = \frac{1 - t}{9} \) gives \( x = \sqrt{\frac{1 - t}{9}} = \frac{\sqrt{1 - t}}{3} \). Thus, we have: \[ I_1 = \int \frac{x}{\sqrt{1 - 9x^2}} \, dx = \int \frac{\frac{\sqrt{1 - t}}{3}}{\sqrt{t}} \left(-\frac{dt}{18x}\right) \] Substituting \( x \) in terms of \( t \): \[ I_1 = -\frac{1}{54} \int \frac{\sqrt{1 - t}}{\sqrt{t}} \, dt \] This integral can be solved using the substitution \( t = \sin^2(\theta) \), leading to: \[ I_1 = -\frac{1}{54} \left( -2\sqrt{1 - t} \cdot t^{1/2} + C \right) = -\frac{1}{27}\sqrt{1 - 9x^2} + C \] ### Step 2: Solve \( I_2 \) For \( I_2 \): Let \( u = \cos^{-1}(3x) \). Then, \( 3x = \cos(u) \) implies \( x = \frac{\cos(u)}{3} \). Differentiating gives: \[ dx = -\frac{\sin(u)}{3} \, du \] Now, we need to express \( \sqrt{1 - 9x^2} \): \[ \sqrt{1 - 9x^2} = \sqrt{1 - 9\left(\frac{\cos(u)}{3}\right)^2} = \sqrt{1 - \cos^2(u)} = \sin(u) \] Thus, we can rewrite \( I_2 \): \[ I_2 = \int \frac{u^2}{\sin(u)} \left(-\frac{\sin(u)}{3} \, du\right) = -\frac{1}{3} \int u^2 \, du \] Integrating gives: \[ I_2 = -\frac{1}{3} \cdot \frac{u^3}{3} + C = -\frac{1}{9} (\cos^{-1}(3x))^3 + C \] ### Step 3: Combine \( I_1 \) and \( I_2 \) Now, combining both parts: \[ I = I_1 + I_2 = -\frac{1}{27} \sqrt{1 - 9x^2} - \frac{1}{9} (\cos^{-1}(3x))^3 + C \] ### Step 4: Identify coefficients \( A \) and \( B \) From the expression: \[ I = A\sqrt{1 - 9x^2} + B(\cos^{-1}(3x))^3 + C, \] we identify: \[ A = -\frac{1}{27}, \quad B = -\frac{1}{9} \] ### Step 5: Calculate \( A - B \) Now, we find \( A - B \): \[ A - B = -\frac{1}{27} - \left(-\frac{1}{9}\right) = -\frac{1}{27} + \frac{3}{27} = \frac{2}{27} \] Thus, the final answer is: \[ \boxed{\frac{2}{27}} \]

To solve the integral \[ \int \frac{x + (\cos^{-1}(3x))^2}{\sqrt{1 - 9x^2}} \, dx = A\sqrt{1 - 9x^2} + B(\cos^{-1}(3x))^3 + C, \] we will break the integral into two parts: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Psqrt(1-9x^(2))+Q(cos^(-1)3x)^(3)+c then

int(dx)/(sqrt(1-9x^(2)))

int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k _(1)) ( sqrt(1-9x ^(2))+ (cos ^(-1) 3x )^(k_(2)))+c, then k _(1) ^(2)+k_(2)^(2)= (where C is an arbitrary constnat. )

int( 1)/(sqrt(9x^(2)-1))dx

int(3x-1)/(sqrt(x^(2)+9))dx

int(1)/(sqrt(x^(2)+3x+1))dx

int1/ (sqrt(9-x^2))^3dx

(9) int_(0)^(1)(dx)/(x+sqrt(1-x^(2)))

int(1)/(sqrt(2x^(2)+3x-2))dx

If int(xln(x+sqrt(1+x^2)))/(sqrt(1+x^2))dx =asqrt(1+x^2)ln(x+sqrt(1+x^2))+b x+c , then (A) a=1,b =-1 (B) a=1,b=1 (C) a=-1, b=1 (D) a=-1, b=-1

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. Evaluate int((cosx)^(n-1))/((sinx)^(n+1))dx= (A) -cot^n x/n+...

    Text Solution

    |

  2. If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is...

    Text Solution

    |

  3. If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Asqrt(1-9x^(2))+B(cos^(-...

    Text Solution

    |

  4. If int(tan^(9)x)dx=f(x)+log|cosx|, where f(x) is a polynomial of degre...

    Text Solution

    |

  5. int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log(e)(f(x))+g(x)+C where C is the...

    Text Solution

    |

  6. Evaluate:int(x+x^(2/3)+x^(1/6))/(x(1+x^(1/3)))dx equals

    Text Solution

    |

  7. int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx gt0 is equal to

    Text Solution

    |

  8. If x^2!=n pi-1, n in N. Then, the value of int x sqrt((2sin(x^2+1)-sin...

    Text Solution

    |

  9. The value of int("cosec x")/(cos^(2)(1+logtan.(x)/(2)))dx is

    Text Solution

    |

  10. Evaluate: int(dx)/(xsqrt(x^(6)-16))=

    Text Solution

    |

  11. int (dx)/(cos (2 x)cos (4x)) is equal to

    Text Solution

    |

  12. intx2^(ln(x^(2)+1))dx is equal to

    Text Solution

    |

  13. If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, ...

    Text Solution

    |

  14. Evaluate: int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

    Text Solution

    |

  15. Evaluate: int((2x+1))/((x^(2)+4x+1)^(3//2))dx

    Text Solution

    |

  16. If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of th...

    Text Solution

    |

  17. The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

    Text Solution

    |

  18. Evaluate :int(dx)/(xsqrt(x^(6)+1)) equals

    Text Solution

    |

  19. int(dx)/((1+sqrtx)^(2010))=2[(1)/(alpha(1+sqrtx)^(alpha))-(1)/(beta(1+...

    Text Solution

    |

  20. int(sin((pi)/(4)-x)dx)/(2+sin2x)=A tan^(-1)(f(x))+B, where A, B are co...

    Text Solution

    |