Home
Class 12
MATHS
If int(tan^(9)x)dx=f(x)+log|cosx|, where...

If `int(tan^(9)x)dx=f(x)+log|cosx|,` where f(x) is a polynomial of degree n in tan x, then the value of n is

A

6

B

7

C

8

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^9 x \, dx \) and find the polynomial \( f(x) \) in terms of \( \tan x \), we will follow these steps: ### Step-by-Step Solution: 1. **Define the Integral**: Let \( I_9 = \int \tan^9 x \, dx \). 2. **Use the Identity for Tangent**: We can express \( \tan^2 x \) in terms of \( \sec^2 x \): \[ \tan^2 x = \sec^2 x - 1 \] Thus, we can rewrite \( \tan^9 x \) as: \[ \tan^9 x = \tan^7 x \cdot \tan^2 x = \tan^7 x (\sec^2 x - 1) \] This gives us: \[ I_9 = \int \tan^7 x (\sec^2 x - 1) \, dx = \int \tan^7 x \sec^2 x \, dx - \int \tan^7 x \, dx \] 3. **Substitute for Integration**: Let \( t = \tan x \), then \( dt = \sec^2 x \, dx \). Therefore: \[ I_9 = \int t^7 \, dt - \int t^9 \, dt \] 4. **Integrate Each Term**: - The first integral: \[ \int t^7 \, dt = \frac{t^8}{8} + C_1 \] - The second integral: \[ \int t^9 \, dt = \frac{t^{10}}{10} + C_2 \] Thus, we have: \[ I_9 = \frac{t^8}{8} - \frac{t^{10}}{10} + C \] Substituting back \( t = \tan x \): \[ I_9 = \frac{\tan^8 x}{8} - \frac{\tan^{10} x}{10} + C \] 5. **Combine the Results**: We can express \( I_9 \) as: \[ I_9 = f(x) + \log |\cos x| \] where \( f(x) \) is a polynomial in \( \tan x \). 6. **Determine the Degree of Polynomial**: The highest power of \( \tan x \) in the expression for \( I_9 \) is \( \tan^{10} x \). Therefore, the polynomial \( f(x) \) will have a degree of: \[ n = 9 \] ### Final Answer: The value of \( n \) is \( 8 \).

To solve the integral \( \int \tan^9 x \, dx \) and find the polynomial \( f(x) \) in terms of \( \tan x \), we will follow these steps: ### Step-by-Step Solution: 1. **Define the Integral**: Let \( I_9 = \int \tan^9 x \, dx \). 2. **Use the Identity for Tangent**: We can express \( \tan^2 x \) in terms of \( \sec^2 x \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int(2x^(2)+5)/(x^(2)+a)dx=f(x) , where f(x) is a polynomial or ratio of polynomials, then the number of possible value(s) of a is eual to

If int(f(x))/(x^(3)-1)dx , where f(x) is a polynomial of degree 2 in x such that f(0)=f(1)=3f(2)=-3 and int(f(x))/(x^(3)-1)dx=-log|x-1|+log|x^(2)+x+1|+(m)/(sqrt(n))tan^(-1)((2x+1)/(sqrt(3)))+C . Then (2m+n) is

Evaluate: intf(x)/(x^3-1)dx , where f(x) is a polynomial of degree 2 in x such that f(0)=f(1)=3f(2)=-3

If int(f(x))/(x^(3)-1)dx=log|(x^(2)+x+1)/(x-1)|+(A)/(948sqrt(3))(tan^(-1)"(2x+1)/(sqrt(3)))+C , where f(x) is a polynomial of second degree in x such that f(0)=f(1)=3f(2)=3 , then A equals……..

int(tan(1+log x))/(x) dx

If f(x) is a polynomial of degree n such that f(0)=0 , f(x)=1/2,....,f(n)=n/(n+1) , ,then the value of f (n+ 1) is

Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^n(x) denotes the n^(th) derivativeof f(x) w.r.t x then then value of n is

If the integral I=int(tanx)/(5+7tan^(2)x)dx=kln |f(x)|+C (where C is the integration constant) and f(0)=5/7 , then the value of f((pi)/(4)) is equal to

If f(x), g(x), h(x) are polynomials of three degree, then phi(x)=|(f'(x),g'(x),h'(x)), (f''(x),g''(x),h''(x)), (f'''(x),g'''(x),h'''(x))| is a polynomial of degree (where f^n (x) represents nth derivative of f(x))

If f(x)=(tan(pi/4+(log)_e x))^((log)_x e) is to be made continuous at x=1, then what is the value of f(1)?

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is...

    Text Solution

    |

  2. If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Asqrt(1-9x^(2))+B(cos^(-...

    Text Solution

    |

  3. If int(tan^(9)x)dx=f(x)+log|cosx|, where f(x) is a polynomial of degre...

    Text Solution

    |

  4. int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log(e)(f(x))+g(x)+C where C is the...

    Text Solution

    |

  5. Evaluate:int(x+x^(2/3)+x^(1/6))/(x(1+x^(1/3)))dx equals

    Text Solution

    |

  6. int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx gt0 is equal to

    Text Solution

    |

  7. If x^2!=n pi-1, n in N. Then, the value of int x sqrt((2sin(x^2+1)-sin...

    Text Solution

    |

  8. The value of int("cosec x")/(cos^(2)(1+logtan.(x)/(2)))dx is

    Text Solution

    |

  9. Evaluate: int(dx)/(xsqrt(x^(6)-16))=

    Text Solution

    |

  10. int (dx)/(cos (2 x)cos (4x)) is equal to

    Text Solution

    |

  11. intx2^(ln(x^(2)+1))dx is equal to

    Text Solution

    |

  12. If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, ...

    Text Solution

    |

  13. Evaluate: int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

    Text Solution

    |

  14. Evaluate: int((2x+1))/((x^(2)+4x+1)^(3//2))dx

    Text Solution

    |

  15. If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of th...

    Text Solution

    |

  16. The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

    Text Solution

    |

  17. Evaluate :int(dx)/(xsqrt(x^(6)+1)) equals

    Text Solution

    |

  18. int(dx)/((1+sqrtx)^(2010))=2[(1)/(alpha(1+sqrtx)^(alpha))-(1)/(beta(1+...

    Text Solution

    |

  19. int(sin((pi)/(4)-x)dx)/(2+sin2x)=A tan^(-1)(f(x))+B, where A, B are co...

    Text Solution

    |

  20. If intsqrt(x+sqrt(x^(2)+2))dx=A{x+sqrt(x^(2)+2)}^(3//2)+(B)/(sqrt(x+sq...

    Text Solution

    |