Home
Class 12
MATHS
int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log(...

`int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log_(e)(f(x))+g(x)+C` where C is the constant of integration and f(x) is positive. Then `f(x)+g(x)` has the value equal to

A

`e^(x)+sinx+2x`

B

`e^(x)+sinx`

C

`e^(x)-sinx`

D

`e^(x)+sinx+x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\cos x - \sin x + 1 - x}{e^x + \sin x + x} \, dx \] we can manipulate the integrand to make it easier to integrate. ### Step 1: Rewrite the integrand We can rewrite the numerator by adding and subtracting \( e^x \): \[ I = \int \frac{\cos x + 1 - x + e^x - e^x - \sin x}{e^x + \sin x + x} \, dx \] This gives us: \[ I = \int \frac{(\cos x + 1 + e^x) - (\sin x + e^x + x)}{e^x + \sin x + x} \, dx \] ### Step 2: Separate the integral Now we can separate the integral into two parts: \[ I = \int \frac{\cos x + 1 + e^x}{e^x + \sin x + x} \, dx - \int \frac{1}{e^x + \sin x + x} \, dx \] ### Step 3: Let \( t = e^x + \sin x + x \) Next, we can use substitution. Let: \[ t = e^x + \sin x + x \] Then, the differential \( dt \) is: \[ dt = (e^x + \cos x + 1) \, dx \] Thus, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{e^x + \cos x + 1} \] ### Step 4: Substitute back into the integral Now, substituting back into the integral: \[ I = \int \frac{1}{t} \, dt - \int 1 \, dx \] The first integral becomes: \[ \int \frac{1}{t} \, dt = \ln |t| + C \] And the second integral is simply: \[ -x \] ### Step 5: Combine the results Combining these results, we have: \[ I = \ln |e^x + \sin x + x| - x + C \] ### Step 6: Identify \( f(x) \) and \( g(x) \) From the given form \( I = \ln(f(x)) + g(x) + C \), we can identify: \[ f(x) = e^x + \sin x + x \] \[ g(x) = -x \] ### Step 7: Find \( f(x) + g(x) \) Now, we need to find \( f(x) + g(x) \): \[ f(x) + g(x) = (e^x + \sin x + x) + (-x) = e^x + \sin x \] ### Final Answer Thus, the value of \( f(x) + g(x) \) is: \[ \boxed{e^x + \sin x} \]

To solve the integral \[ I = \int \frac{\cos x - \sin x + 1 - x}{e^x + \sin x + x} \, dx \] we can manipulate the integrand to make it easier to integrate. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

If intf(x)dx=3[f(x)]^(2)+c (where c is the constant of integration) and f(1)=(1)/(6) , then f(6pi) is equal to

If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1 ,then the value of f(1).g(1) is equal to

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

Let inte^(x).x^(2)dx=f(x)e^(x)+C (where, C is the constant of integration). The range of f(x) as x in R is [a, oo) . The value of (a)/(4) is

The value of int((tan^(-1)(sinx+1))cosx)/((3+2sinx-cos^(2)x))dx is (where c is the constant of integration)

If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C , (where x gt0 and C is the constant of integration ) then the range of f(x) is

If the integral I=∫(-(sinx)/(x)-ln x cosx)dx=f(x)+C (where, C is the constant of integration) and f(e )=-sine , then the number of natural numbers less than [f((pi)/(6))] is equal to (where [.] is the greatest integer function)

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Asqrt(1-9x^(2))+B(cos^(-...

    Text Solution

    |

  2. If int(tan^(9)x)dx=f(x)+log|cosx|, where f(x) is a polynomial of degre...

    Text Solution

    |

  3. int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log(e)(f(x))+g(x)+C where C is the...

    Text Solution

    |

  4. Evaluate:int(x+x^(2/3)+x^(1/6))/(x(1+x^(1/3)))dx equals

    Text Solution

    |

  5. int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx gt0 is equal to

    Text Solution

    |

  6. If x^2!=n pi-1, n in N. Then, the value of int x sqrt((2sin(x^2+1)-sin...

    Text Solution

    |

  7. The value of int("cosec x")/(cos^(2)(1+logtan.(x)/(2)))dx is

    Text Solution

    |

  8. Evaluate: int(dx)/(xsqrt(x^(6)-16))=

    Text Solution

    |

  9. int (dx)/(cos (2 x)cos (4x)) is equal to

    Text Solution

    |

  10. intx2^(ln(x^(2)+1))dx is equal to

    Text Solution

    |

  11. If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, ...

    Text Solution

    |

  12. Evaluate: int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

    Text Solution

    |

  13. Evaluate: int((2x+1))/((x^(2)+4x+1)^(3//2))dx

    Text Solution

    |

  14. If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of th...

    Text Solution

    |

  15. The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

    Text Solution

    |

  16. Evaluate :int(dx)/(xsqrt(x^(6)+1)) equals

    Text Solution

    |

  17. int(dx)/((1+sqrtx)^(2010))=2[(1)/(alpha(1+sqrtx)^(alpha))-(1)/(beta(1+...

    Text Solution

    |

  18. int(sin((pi)/(4)-x)dx)/(2+sin2x)=A tan^(-1)(f(x))+B, where A, B are co...

    Text Solution

    |

  19. If intsqrt(x+sqrt(x^(2)+2))dx=A{x+sqrt(x^(2)+2)}^(3//2)+(B)/(sqrt(x+sq...

    Text Solution

    |

  20. int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

    Text Solution

    |