Home
Class 12
MATHS
int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx g...

`int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx gt0` is equal to

A

`ln(1+(e^(x))/(x^(2)))+c`

B

`ln(-(1)/(2)+(e^(x))/(x^(2)))+c`

C

`ln(2+(e^(x))/(x^(2)))+c`

D

`ln(x+(e^(x))/(x^(2)))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{e^x (x - 2)}{x (x^2 + e^x)} \, dx, \] we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int \frac{e^x (x - 2)}{x (x^2 + e^x)} \, dx = \int \frac{e^x x - 2e^x}{x (x^2 + e^x)} \, dx. \] ### Step 2: Split the Integral Next, we can split the integral into two parts: \[ \int \frac{e^x x}{x (x^2 + e^x)} \, dx - 2 \int \frac{e^x}{x (x^2 + e^x)} \, dx. \] This simplifies to: \[ \int \frac{e^x}{x^2 + e^x} \, dx - 2 \int \frac{e^x}{x (x^2 + e^x)} \, dx. \] ### Step 3: Simplify the Denominator We can rewrite the denominator \(x^2 + e^x\) and notice that we can add and subtract \(3x^2\) in the numerator: \[ = \int \frac{e^x (3x^2 + e^x - 3x^2)}{x (x^2 + e^x)} \, dx. \] ### Step 4: Separate the Terms Now we can separate the terms: \[ \int \frac{3x^2 + e^x}{x^2 + e^x} \, dx - 3 \int \frac{x^2 + e^x}{x (x^2 + e^x)} \, dx. \] ### Step 5: Use Substitution Let \(t = x^3 + x e^x\). Then, the differential \(dt\) can be expressed as: \[ dt = (3x^2 + e^x) \, dx. \] Thus, we can rewrite the integral as: \[ \int \frac{dt}{t} - 3 \int \frac{dx}{x}. \] ### Step 6: Integrate Now we can integrate both parts: \[ \int \frac{dt}{t} = \ln |t| + C_1, \] and \[ -3 \int \frac{dx}{x} = -3 \ln |x| + C_2. \] ### Step 7: Combine the Results Combining these results gives us: \[ \ln |t| - 3 \ln |x| + C = \ln \left( \frac{t}{x^3} \right) + C. \] ### Step 8: Substitute Back for \(t\) Substituting back for \(t\): \[ \ln \left( \frac{x^3 + x e^x}{x^3} \right) + C = \ln \left( 1 + \frac{e^x}{x^2} \right) + C. \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{e^x (x - 2)}{x (x^2 + e^x)} \, dx = \ln \left( 1 + \frac{e^x}{x^2} \right) + C. \]

To solve the integral \[ \int \frac{e^x (x - 2)}{x (x^2 + e^x)} \, dx, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int x^(2)e^(x)dx

int (2x^(2) +e^(x))dx

int x^(2)e^(-x)dx

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

int(2)/( (e^(x) + e^(-x))^(2)) dx is equal to

The intergral int x cos^(-1) ((1-x^(2))/(1+x^(2))) dx, (x gt 0) is equal to

int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

int (e^x +2x)/(e^x+x^2) dx

int(x e^x)/((1+x)^2)dx is equal to

int_- 1^1(e^(-1/ x))/(x^2(1+e^(-2/ x)))dx is equal to :

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log(e)(f(x))+g(x)+C where C is the...

    Text Solution

    |

  2. Evaluate:int(x+x^(2/3)+x^(1/6))/(x(1+x^(1/3)))dx equals

    Text Solution

    |

  3. int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx gt0 is equal to

    Text Solution

    |

  4. If x^2!=n pi-1, n in N. Then, the value of int x sqrt((2sin(x^2+1)-sin...

    Text Solution

    |

  5. The value of int("cosec x")/(cos^(2)(1+logtan.(x)/(2)))dx is

    Text Solution

    |

  6. Evaluate: int(dx)/(xsqrt(x^(6)-16))=

    Text Solution

    |

  7. int (dx)/(cos (2 x)cos (4x)) is equal to

    Text Solution

    |

  8. intx2^(ln(x^(2)+1))dx is equal to

    Text Solution

    |

  9. If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, ...

    Text Solution

    |

  10. Evaluate: int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

    Text Solution

    |

  11. Evaluate: int((2x+1))/((x^(2)+4x+1)^(3//2))dx

    Text Solution

    |

  12. If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of th...

    Text Solution

    |

  13. The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

    Text Solution

    |

  14. Evaluate :int(dx)/(xsqrt(x^(6)+1)) equals

    Text Solution

    |

  15. int(dx)/((1+sqrtx)^(2010))=2[(1)/(alpha(1+sqrtx)^(alpha))-(1)/(beta(1+...

    Text Solution

    |

  16. int(sin((pi)/(4)-x)dx)/(2+sin2x)=A tan^(-1)(f(x))+B, where A, B are co...

    Text Solution

    |

  17. If intsqrt(x+sqrt(x^(2)+2))dx=A{x+sqrt(x^(2)+2)}^(3//2)+(B)/(sqrt(x+sq...

    Text Solution

    |

  18. int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

    Text Solution

    |

  19. int(dx)/(x^(2)sqrt(16-x^(2))) has the value equal to

    Text Solution

    |

  20. Evaluate int(tan(pi/4 -x))/(cos^(2)x sqrt(tan^(3)x+tan^(2) x+ tan x))d...

    Text Solution

    |